F Pointillart

Learn More
A redox active dinuclear complex [Yb(tta)(2)(L(1))(L(2))](2)·1.4(CH(2)Cl(2)) displays single molecule magnet behaviour with M(J) = ±7/2 ground state. The anisotropic barrier Δ is evaluated by the three dc data fit, ac analysis and emission spectrum demonstrating the correlation between magnetic and optical properties.
The reaction between the TTF-fused dipyrido[3,2-a:2',3'-c]phenazine (dppz) ligand (L) and 1 equiv of Ln(hfac)3·2H2O (hfac(-) = 1,1,1,5,5,5-hexafluoroacetyacetonate) or 1 equiv of Ln(tta)3·2H2O (tta(-) = 2-thenoyltrifluoroacetonate) (Ln(III) = Dy(III) or Yb(III)) metallic precursors leads to four mononuclear complexes of formula [Ln(hfac)3(L)]·C6H14 (Ln(III)(More)
The influence of nuclear spin on the magnetic hysteresis of a single-molecule is evidenced. Isotopically enriched Dy(III) complexes are synthesized and an isotopic dependence of their magnetic relaxation is observed. This approach is coupled with tuning of the molecular environment through dilution in an amorphous or an isomorphous diamagnetic matrix. The(More)
The reaction between the tetrakis(2-pyridyl-N-oxidemethylthio)tetrathiafulvalene ligand (L) and Ln(hfac)(3)·2H(2)O precursors (where hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate anion and Ln = Tb(III) (1), Dy(III) (2), Er(III) (3), and Yb(III) (4) and (4b)) leads to the formation of five tetranuclear complexes of formula(More)
The tetrathiafulvalene-amido-2-pyridine-N-oxide (L) ligand has been employed to coordinate 4f elements. The architecture of the complexes mainly depends on the ionic radii of the lanthanides. Thus, the reaction of L in the same experimental protocol leads to three different molecular structure series. Binuclear [Ln(2)(hfac)(5)(O(2)CPhCl)(L)(3)]·2 H(2)O(More)
Six new 3d4f heterobimetallic dinuclear complexes, [(L(1))MLn(hfac)(3)] [M = Cu(II), Ni(II); Ln = Y(III), Er(III), Yb(III); L(1) = 4,5-bis(propylthio)tetrathiafulvalene-N,N'-phenylenebis(salicylideneimine) and hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate], and one tetranuclear complex, [(L(2))Cu(OH)Er(hfac)(3)](2) (where L(2) =(More)
The reaction between (4,5-bis(2-pyridyl-N-oxidemethylthio)-4',5')-ethylenedithiotetrathiafulvene (L(1)) or -methyldithiotetrathiafulvene (L(2)) ligands and Ln(hfac)3·nH2O precursors (Ln(III) = Pr, Tb, Dy, Er, and Yb) leads to the formation of seven dinuclear complexes of formula [Ln2(hfac)6(H2O)x(L(y))2] (x = 2 and y = 1 for Ln(III) = Pr (1); x = 0 and y =(More)
The [Dy(tta)3(L)] complex behaves as a single ion magnet both in its crystalline phase and in solution. Experimental and theoretical magnetic anisotropy axes perfectly match and lie along the most electro-negative atoms of the coordination sphere. Both VSM and MCD measurements highlight the robustness of the complex, with persistence of the memory effect(More)
The rational synthesis of the 2-{1-methylpyridine-N-oxide-4,5-[4,5-bis(propylthio)tetrathiafulvalenyl]-1H-benzimidazol-2-yl}pyridine ligand (L) is described. It led to the tetranuclear complex [Dy4(tta)12(L)2] (Dy-Dy2-Dy) after coordination reaction with the precursor Dy(tta)3⋅2 H2O (tta(-) = 2-thenoyltrifluoroacetonate). The X-ray structure of Dy-Dy2-Dy(More)
Reaction of the ligands 4,5-bis(propylthio)tetrathiafulvalene-2-(2-pyridyl)benzimidazole (L(1)) and 4,5-bis(propylthio)tetrathiafulvalene-2-(2-pyridyl)-3-(2-pyridinylmethyl)benzimidazole (L(2)) with Dy(hfac)3⋅2 H2O (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate) gave mononuclear complexes [Dy(hfac)3(L(1))] (1) and [Dy(hfac)3(L(2))] (2). In both compounds the(More)