F. Plaschke

Learn More
The FIELDS instrumentation suite on the Magnetospheric Multiscale (MMS) mission provides comprehensive measurements of the full vector magnetic and electric fields in the reconnection regions investigated by MMS, including the dayside magnetopause and the night-side magnetotail acceleration regions out to 25 Re. Six sensors on each of the four MMS(More)
We present a statistical study of dipolarization fronts (DFs), using magnetic field data from MMS and Cluster, at radial distances below 12 R E and 20 R E , respectively. Assuming that the DFs have a semicircular cross section and are propelled by the magnetic tension force, we used multispacecraft observations to determine the DF velocities. About three(More)
Collisionless shock nonstationarity arising from microscale physics influences shock structure and particle acceleration mechanisms. Nonstationarity has been difficult to quantify due to the small spatial and temporal scales. We use the closely spaced (subgyroscale), high-time-resolution measurements from one rapid crossing of Earth's quasiperpendicular bow(More)
We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward(More)
The subsolar magnetosheath is penetrated by transient enhancements in dynamic pressure. These enhancements, also called high-speed jets, can propagate to the magnetopause, causing large-amplitude yet localized boundary indentations on impact. Possible downstream consequences of these impacts are, e.g., local magnetopause reconnection, impulsive penetration(More)
  • 1