Learn More
Sticholysins I and II are two highly hemolytic polypeptides purified from the Caribbean Sea anemone Stichodactyla helianthus. Their high sequence homology (93%) indicates that they correspond to isoforms of the same hemolysin. The spectroscopic measurements show a close similarity in the secondary structure content, conformation and stability of both(More)
Two hemolysins, Sticholysin I (St I) and Sticholysin II (St II) were purified from the sea anemone Stichodactyla helianthus combining gel filtration and ion exchange chromatography. The amino acid composition of both cytolysins was determined revealing a high proportion of glycine, lysine, tyrosine and non-polar amino acids (alanine, leucine and valine).(More)
To investigate the role of the N-terminal region in the lytic mechanism of the pore-forming toxin sticholysin II (St II), we studied the conformational and functional properties of peptides encompassing the first 30 residues of the protein. Peptides containing residues 1-30 (P1-30) and 11-30 (P11-30) were synthesized and their conformational properties were(More)
Sticholysins (Sts) I and II (StI/II) are pore-forming toxins (PFTs) produced by the Caribbean Sea anemone Stichodactyla helianthus belonging to the actinoporin family, a unique class of eukaryotic PFTs exclusively found in sea anemones. As for the rest of the members of this family, Sts are cysteine-less proteins, with molecular weights around 20 kDa, high(More)
Sticholysins I and II (Sts I and II) are two potent cytolysins from the sea anemone Stichodactyla helianthus. These isoforms present 13 substitutions, with three non-conservative located at the N-terminus. St II is considerably more hemolytic than St I in human red blood cells, a result explained by the smaller number of negatively charged groups present at(More)
Sticholysin I (StI), a potent cytolysin isolated from the sea anemone Stichodactyla helianthus, was linked to the monoclonal antibody (mAb) ior C5. StI acts by forming hydrophilic pores in the membrane of the attacked cells leading to osmotic lysis. ior C5 is a murine IgG1, which recognizes the tumor associated antigen (TAA) ior C2. The cytolysin and the(More)
Sticholysins I and II (St I/II) are cytolysins purified from the sea anemone Stichodactyla helianthus. In this study, we show their pharmacological action on guinea-pig and snail models in native and pH-denatured conditions in order to correlate the pharmacological findings with the pore-forming activity of both isoforms. In guinea-pig erythrocytes (N = 3),(More)
Experimental evidence shows that the mechanism of pore formation by actinoporins is a multistep process, involving binding of the water-soluble monomer to the membrane and subsequent oligomerization on the membrane surface, leading to the formation of a functional pore. However, as for other eukaryotic pore-forming toxins, the molecular details of the(More)
The effect of sodium dodecyl sulfate (SDS) upon the conformation and hemolytic activity of St I and St II strongly depends on its concentration. At relatively low surfactant concentrations (ca. 0.5-5mM range) the surfactant leads to the formation of aggregates, as suggested by the turbidity observed even at relatively low (micromolar range) protein(More)
Sticholysin II (St II) is a cytolysin produced by the sea anemone Stichodactyla helianthus, characterized by forming oligomeric pores in natural and artificial membranes. In the present work the influence of the membrane lipidic components sphingomyelin (SM) and cholesterol (Cho) on binding and functional activity of St II, was evaluated using ELISA, lipid(More)