Learn More
The influence of a simple semiempirical van der Waals vdW correction on the description of dispersive, covalent, and ionic bonds within density functional theory is studied. The correction is based on the asymptotic London form of dispersive forces and a damping function for each pair of atoms. It thus depends solely on the properties of the two atoms(More)
Graphene has a multitude of striking properties that make it an exceedingly attractive material for various applications, many of which will emerge over the next decade. However, one of the most promising applications lie in exploiting its peculiar electronic properties which are governed by its electrons obeying a linear dispersion relation. This leads to(More)
A large variety of gas phase conformations of the amino acids glycine, alanine, and cysteine is studied by numerically efficient semi-local gradient-corrected density functional theory calculations using a projector-augmented wave scheme and periodic boundary conditions. Equilibrium geometries, conformational energies, dipole moments, vibrational modes, and(More)
The adsorption of adenine on graphite is analyzed from first-principles calculations as a model case for the interaction between organic molecules and chemically inert surfaces. Within density-functional theory we find no chemical bonding due to ionic or covalent interactions, only a very weak attraction at distances beyond the equilibrium position due to(More)
Polycrystalline graphene is a patchwork of coalescing graphene grains of varying lattice orientations and size, resulting from the chemical vapor deposition (CVD) growth at random nucleation sites on metallic substrates. The morphology of grain boundaries has become an important topic given its fundamental role in limiting the mobility of charge carriers in(More)
ZnO in its many forms, such as bulk, thin films, nanorods, nanobelts, and quantum dots, attracts significant attention because of its exciting optical, electronic, and magnetic properties. For very thin ZnO films, predictions were made that the bulk wurtzite ZnO structure would transit to a layered graphene-like structure. Graphene-like ZnO layers were(More)
The prospect of transporting spin information over long distances in graphene, possible because of its small intrinsic spin– orbit coupling (SOC) and vanishing hyperfine interaction, has stimulated intense research exploring spintronics applications. However, measured spin relaxation times are orders of magnitude smaller than initially predicted, while the(More)
Based on a generalized theory of charge transport in organic crystals we investigate the motion of polarons of arbitrary size. Within this theory, we analyze the influence of characteristic electronic, vibronic, and thermal energies and their role for the transport regimes. The polaron bandwidth is identified as the central temperature-dependent quantity.(More)
We design three-dimensional models of topological insulator thin films, showing a tunability of the odd number of Dirac cones driven by the atomic-scale geometry at the boundaries. A single Dirac cone at the Γ-point can be obtained as well as full suppression of quantum tunneling between Dirac states at geometrically differentiated surfaces. The spin(More)