F. Navarrina

Learn More
CFD has become more and more used in the industry for the simulation of flows. Nevertheless, the complex configurations of real engineering problems make difficult the application of very accurate methods that only works on structured grids. From this point of view, the development of higher order methods for unstructured grids is desirable. The finite(More)
Structural topology optimization problems have been traditionally stated and solved by means of maximum stiffness formulations. On the other hand, some effort has been devoted to stating and solving this kind of problems by means of minimum weight formulations with stress (and/or displacement) constraints. It seems clear that the latter approach is closer(More)
Topology structural optimization problems have been usually stated in terms of a maximum stiffness (minimum compliance) approach. In this kind of formulations, the aim is to distribute a given amount of material in a certain domain, so that the stiffness of the resulting structure is maximized for a given load case. In addition, no stress or displacement(More)
Sizing and shape structural optimization problems are normally stated in terms of a minimum weight approach with constraints that limit the maximum allowable stresses and displacements. However, topology structural optimization problems have been usually stated in terms of a maximum stiffness (minimum compliance) approach. In this kind of formulations, the(More)
In this paper we propose a Galerkin based SPH formulation with moving least squares meshless approximation, applied to free surface flows. The Galerkin scheme provides a clear framework to analyze several procedures widely used in the classical SPH literature, suggesting that some of them should be reformulated in order to develop consistent algorithms. The(More)
1. Abstract Since Bendsøe and Kikuchi proposed the basic concepts in 1988, most of topology structural optimization results have been obtained so far by means of a maximum stiffness (minimum strain energy, minimum compliance) approach. In this kind of approaches, the mass is normally restricted to a given percentage of the total maximum possible mass, while(More)
In this paper we present a numerical study of the hyperbolic model for convection-diffusion transport problems that has been recently proposed by the authors [16]. This model avoids the infinite speed paradox, inherent to the standard parabolic model and introduces a new parameter τ called relaxation time. This parameter plays the role of an “inertia” for(More)
Topology optimization of continuum structures is a relatively new branch of the structural optimization field. Since the basic principles were first proposed by Bendsøe and Kikuchi in 1988, most of the work has been dedicated to the so-called maximum stiffness (or minimum compliance) formulations. However, since a few years different approaches have been(More)
a r t i c l e i n f o This paper presents a shock detection technique based on Moving Least Squares reproducing kernel approximations. The multiresolution properties of these kinds of approximations allow us to define a wavelet function to act as a smoothness indicator. This MLS sensor is used to detect the shock waves. When the MLS sensor is used in a(More)
Abstract. Substation grounding design involves computing the equivalent resistance of the earthing system —for reasons of equipment protection—, as well as distribution of potentials on the earth surface —for reasons of human security— when fault conditions occur. While very crude approximations were available in the sixties, several methods have been(More)