F. Munarin

Learn More
A variety of natural polymers and proteins are considered to be 3D cell culture structures able to mimic the extracellular matrix (ECM) to promote bone tissue regeneration. Pectin, a natural polysaccharide extracted from the plant cell walls and having a chemical structure similar to alginate, provides interesting properties as artificial ECM. In this work,(More)
Pectin, due to its simple and cytocompatible gelling mechanism, has been recently exploited for different biomedical applications including drug delivery, gene delivery, wound healing and tissue engineering. Recent studies involving pectin for the biomedical field are reviewed, with the aim to capture the state of art on current research about pectin gels(More)
Natural polymers, because of their biocompatibility, availability, and physico-chemical properties have been the materials of choice for the fabrication of injectable hydrogels for regenerative medicine. In particular, they are appealing materials for delivery systems and provide sustained and controlled release of drugs, proteins, gene, cells, and other(More)
The production of injectable pectin hydrogels by internal gelation with calcium carbonate is proposed. The pH of pectin was increased with NaOH or NaHCO3 to reach physiological values. The determination of the equivalence point provided evidence that the pH can be more precisely modulated with NaHCO3 than with NaOH. Degradation and inability to gel was(More)
Autologous and eterologous cell encapsulation has been extensively studied for clinical application in functional organs substitution, recombinant cell transplantation in gene therapy or in muscle and cartilage regeneration to treat degenerative pathologies. In this work, calcium alginate, calcium alginate/chitosan, calcium alginate/gelatin and(More)
Pectin-based biocomposite hydrogels were produced by internal gelation, using different hydroxyapatite (HA) powders from commercial source or synthesized by the wet chemical method. HA possesses the double functionality of cross-linking agent and inorganic reinforcement. The mineralogical composition, grain size, specific surface area and microstructure of(More)
In this work, a novel injectable biocomposite hydrogel is produced by internal gelation, using pectin as organic matrix and hydroxyapatite either as crosslinking agent and inorganic reinforcement. Tunable gelling kinetics and rheological properties are obtained varying the hydrogels' composition, with the final aim of developing systems for cell(More)
Carbomers, cross-linked poly(acrylic acid) microgels, have been widely used in pharmaceutical formulations as swollen hydrogels. Agarose, whose thermoreversibility may be exploited for drug loading, forms a gel with a mechanism involving coil-helix transition at about 36 °C. In this work carbomer microgels were combined with agarose networks in a(More)
Rapid prototyping and fabrication of elastomeric molds for sterile culture of engineered tissues allow for the development of tissue geometries that can be tailored to different in vitro applications and customized as implantable scaffolds for regenerative medicine. Commercially available molds offer minimal capabilities for adaptation to unique conditions(More)
Pectin is a natural biopolymer that forms, in the presence of divalent cations, ionic-bound gels typifying a large class of biological gels stabilized by non-covalent cross-links. We investigate and compare the kinetics of formation and aging of pectin gels obtained either through external gelation via perfusion of free Ca(2+) ions, or by internal gelation(More)