Learn More
The recent availability of the Kinect™ sensor, a cost-effective markerless motion capture system (MLS), offers interesting possibilities in clinical functional analysis and rehabilitation. However, neither validity nor reproducibility of this device is known yet. These two parameters were evaluated in this study. Forty-eight volunteers performed shoulder(More)
Quadric surface fitting of joint surface areas is often performed to allow further processing of joint component size, location and orientation (pose), or even to determine soft tissue wrapping by collision detection and muscle moment arm evaluation. This study aimed to determine, for the femoral bone, if the position of its morphological joint centers and(More)
The objective of the study was to compare the precision of shoulder anatomical landmark palpation using a CAST-like method and a newly developed anatomical palpator device (called A-Palp) using the forefinger pulp directly. The repeated-measures experimental design included four examiners that twice repeated measurements on eleven scapula and humerus(More)
The KinectTM sensors can be used as cost effective and easy to use Markerless Motion Capture devices. Therefore a wide range of new potential applications are possible. Unfortunately, right now, the stick model skeleton provided by the KinectTM is only composed of 20 points located approximately at the joint level of the subject which movements are being(More)
Accurate spatial location of joint center (JC) is a key issue in motion analysis since JC locations are used to define standardized anatomical frames, in which results are represented. Accurate and reproducible JC location is important for data comparison and data exchange. This paper presents a method for JC locations based on the multiple regression(More)
BACKGROUND The costovertebral joint complex is mechanically involved in both respiratory function and thoracic spine stability. The thorax has been studied for a long time to understand its involvement in the physiological mechanism leading to specific gas exchange. Few studies have focused on costovertebral joint complex kinematics, and most of them(More)
Modeling tools related to the musculoskeletal system have been previously developed. However, the integration of the real underlying functional joint behavior is lacking and therefore available kinematic models do not reasonably replicate individual human motion. In order to improve our understanding of the relationships between muscle behavior, i.e.(More)
The hip bone is one of the most reliable indicators of sex in the human body due to the fact it is the most dimorphic bone. Probabilistic Sex Diagnosis (DSP: Diagnose Sexuelle Probabiliste) developed by Murail et al., in 2005, is a sex determination method based on a worldwide hip bone metrical database. Sex is determined by comparing specific measurements(More)
Despite the availability of the International Society of Biomechanics (ISB) recommendations for the orientation of anatomical frames, no consensus exists about motion representations related to finger kinematics. This paper proposes novel anatomical frames for motion representation of the phalangeal segments of the long fingers. A three-dimensional model of(More)
INTRODUCTION Clinically relevant muscle information (length, moment arms) is difficult to estimate directly in clinical settings. Quality of the obtained muscle approximation strongly relies on the underlying bone and kinematic data used to create the joint models that will be crossed by the muscle spatial path. We present a method that allows fusing(More)