Learn More
Drosophila sequences at chromosomal positions 25D (Brk25D) and 43E (Brk43E) are similar to the TGF beta type I receptor serine/threonine kinases and are expressed broadly during embryogenesis. Brk25D binds dpp protein and bone morphogenetic protein 2 with high affinity. Mutations affecting Brk25D map to the gene thick veins and block the expression of two(More)
The Drosophila abelson (abl) gene encodes the homolog of the mammalian c-abl cytoplasmic tyrosine kinase and is an essential gene for the development of viable adult flies. Three second-site mutations that suppress the lethality caused by the absence of abl function have been isolated, and all three map to the gene enabled (ena). The mutations are recessive(More)
Mutations in the Drosophila Abelson tyrosine kinase have pleiotropic effects late in development that lead to pupal lethality or adults with a reduced life span, reduced fecundity and rough eyes. We have examined the expression of the abl protein throughout embryonic and pupal development and analyzed mutant phenotypes in some of the tissues expressing abl.(More)
Dorsal-ventral patterning within the ectoderm of the Drosophila embryo requires seven zygotic genes, including short gastrulation (sog). Here we demonstrate that sog, which is expressed in the ventrolateral region of the embryo that gives rise to the nerve cord, is functionally homologous to the chordin gene of Xenopus, which is expressed in the dorsal(More)
During Drosophila embryogenesis, the Abelson tyrosine kinase (abl) is localized in the axons of the central nervous system (CNS). Mutations in abl have no detectable effect on the morphology of the embryonic CNS, and the mutant animals survive to the pupal and adult stages. In the absence of abl function, however, heterozygous mutations or deletions of(More)
Inductive interactions between germ layers are an essential feature of the development of many organisms. In several species these interactions are mediated by members of the transforming growth factor-beta (TGF beta) family. In amphibians, different concentrations of activin can induce different types of mesoderm in the animal cap assay. In Drosophila, a(More)
The decapentaplegic gene complex (2-4.0) in Drosophila melanogaster is defined by a series of allelic mutations affecting imaginal disk development. Decapentaplegic (dpp) mutant individuals exhibit a variety of pattern deficiencies and duplications in structures derived from one or more of the 15 major imaginal disks. Based on dpp mutant phenotypes, we(More)
The pattern of structures on most of the adult cuticle of Drosophila is determined in the larval imaginal disks. The Drosophila growth factor homolog decapentaplegic (dpp) is believed to participate in pattern formation in imaginal disks, primarily along what will become the proximal-to-distal axis of adult appendages. We report that dpp expression in wing,(More)
The imaginal disk expression of the TGF-beta superfamily member DPP in a narrow stripe of cells along the anterior-posterior compartment boundary is essential for proper growth and patterning of the Drosophila appendages. We examine DPP receptor function to understand how this localized DPP expression produces its global effects upon appendage development.(More)
The molecular characterization of a number of loci that control developmental processes in invertebrates has revealed that a subset of these genes encode products that are homologous to vertebrate growth factors. Genetic analyses of the autonomy of action and molecular analysis of the patterns of expression of these genes have demonstrated that products of(More)