Learn More
The set up described in Steffen et al. (Biochemistry 40:173-180, 2001) was used to monitor in the time domain from 100 ns to 10 s single turnover flash-induced transients of the normalized fluorescence yield (SFITFY) on dark-adapted cells of the thermophilic algae Chlorella pyrenoidosa Chick. Perfect data fit was achieved within the framework of a(More)
Measurements of Single Flash Induced Transient Fluorescence Yield (SFITFY) on spinach leaves and whole cells of green thermophilic alga Chlorella pyrenoidosa Chick were analyzed for electron transfer (ET) steps and coupled proton transfer (PT) on both the donor and the acceptor side of the reaction center (RC) of photosystem II (PS II). A specially(More)
The crystal structure of the class IIb water-soluble chlorophyll binding protein (WSCP) from Lepidium virginicum is used to model linear absorption and circular dichroism spectra as well as excited state decay times of class IIa WSCP from cauliflower reconstituted with chlorophyll (Chl) a and Chl b. The close agreement between theory and experiment suggests(More)
The structure of phycobiliproteins of the cyanobacterium Acaryochloris marina was investigated in buffer solution at physiological temperatures, i.e. under the same conditions applied in spectroscopic experiments, using small angle neutron scattering. The scattering data of intact phycobiliproteins in buffer solution containing phosphate can be well(More)
Persistent spectral hole burning at 4.5 K has been used to investigate the excitonic energy level structure and the excited state dynamics of the recombinant class-IIa water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The hole-burned spectra are composed of four main features: (i) a narrow zero-phonon hole (ZPH) at the burn wavelength, (ii)(More)
Plants contain water-soluble chlorophyll-binding proteins (WSCPs) that function neither as antennas nor as components of light-induced electron transfer of photosynthesis but are likely constituents of regulatory protective pathways in particular under stress conditions. This study presents results on the spectroscopic properties of recombinant WSCP from(More)
This short review paper describes spectroscopic studies on pigment-pigment and pigment-protein interactions of chlorophyll (Chl) a and b bound to the recombinant protein of class IIa water soluble chlorophyll protein (WSCP) from cauliflower. Two Chls form a strongly excitonically coupled open sandwich dimer within the tetrameric protein matrix. In marked(More)
As high-intensity solar radiation can lead to extensive damage of the photosynthetic apparatus, cyanobacteria have developed various protection mechanisms to reduce the effective excitation energy transfer (EET) from the antenna complexes to the reaction center. One of them is non-photochemical quenching (NPQ) of the phycobilisome (PB) fluorescence. In(More)
The present study describes the fluorescence emission properties of recombinant water-soluble chlorophyll (Chl) protein (WSCP) complexes reconstituted with either Chl a or Chl b alone (Chl a only or Chl b only WSCP, respectively) or mixtures of both pigments at different stoichiometrical ratios. Detailed investigations were performed with time and space(More)
  • F J Schmitt
  • 1976
All of the spectrally different colors that match according to an observer form a metamer ensemble. We present a new method to generate the metamer ensembles for both direct light and reflecting-surface-color problems. The method is based on the properties of particular metameric functions (the simple elements) and is particularly appropriate for treating(More)