F.-J. Richard

Learn More
BACKGROUND Immune response pathways have been relatively well-conserved across animal species, with similar systems in both mammals and invertebrates. Interestingly, honey bees have substantially reduced numbers of genes associated with immune function compared with solitary insect species. However, social species such as honey bees provide an excellent(More)
Chemical messengers are the primary mode of intracolony communication in the majority of social insect species. Chemically transmitted information plays a major role in nestmate recognition and kin recognition. Physical and behavioral castes often differ in chemical signature, and queen effects can be significant regulators of behavior and reproduction.(More)
Vibrations and sounds, collectively called vibroacoustics, play significant roles in intracolony communication in termites, social wasps, ants, and social bees. Modalities of vibroacoustic signal production include stridulation, gross body movements, wing movements, high-frequency muscle contractions without wing movements, and scraping mandibles or tapping(More)
Invertebrates, and especially insects, constitute valuable and convenient models for the study of the evolutionary roots of immune-related behaviors. With stable conditions in the nest, high population densities, and frequent interactions, social insects such as ants provide an excellent system for examining the spread of pathogens. The evolutionary success(More)
  • 1