Learn More
PK 11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide] is a new ligand for the "peripheral-type" benzodiazepine binding sites, chemically unrelated to benzodiazepines. It displaces with a very high potency (IC50 congruent to 10(-9) M) [3H]-RO5-4864 (a benzodiazepine which specifically labels the peripheral-type sites) from its(More)
The peripheral-type benzodiazepine binding site, erstwhile characterized in the rodent and feline brain, has now been characterized in post-mortem human brain using [3H]PK 11195. The kinetics and pharmacological properties of the binding of this ligand are similar to peripheral-type benzodiazepine binding sites elsewhere. The potency of RO5-4864 for this(More)
[3H] RO5-4864 binding sites have been characterized in kidney, heart, brain, adrenals and platelets in the rat. In all these organs the following order of potency in the RO5-4864 displacement was found: RO5-4864 greater than diazepam greater than clonazepam indicating that they correspond to the "peripheral type" of benzodiazepine binding sites. PK 11195,(More)
PK 11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinec arboxamide] is a compound chemically unrelated to benzodiazepines with a high affinity for the "peripheral type" binding sites for benzodiazepines (Le Fur et al., 1983a). [3H]PK 11195 binds to the adrenal membranes with a high affinity (KD congruent to 3 nM) in a specific, reversible(More)
Two epimer quinoline derivatives, PK 5078 and PK 7059, have been shown to be potent at releasing 5-HT from blood platelets. Moreover PK 5078 was also a potent and selective inhibitor of the uptake of 5-HT, being about 20 times as active as clomipramine. Both drugs, like p-chloroamphetamine, released 5-HT but did not inhibit MAO-A. Whilst p-chloroamphetamine(More)
  • 1