F I Feldchtein

Learn More
Imaging cerebral structure in vivo can be accomplished by many methods, including MRI, ultrasound, and computed tomography. Each offers advantages and disadvantages with respect to the others, but all are limited in spatial resolution to millimeter-scale features when used in routine applications. Optical coherence tomography (OCT) is a new, high resolution(More)
We present a novel image acquisition technique for Optical Coherence Tomography (OCT) that enables manual lateral scanning. The technique compensates for the variability in lateral scan velocity based on feedback obtained from correlation between consecutive A-scans. Results obtained from phantom samples and biological tissues demonstrate successful(More)
A two-axis scanning catheter was developed for 3D endoscopic imaging with spectral domain optical coherence tomography (SD-OCT). The catheter incorporates a micro-mirror scanner implemented with microelectromechanical systems (MEMS) technology: the micro-mirror is mounted on a two-axis gimbal comprised of folded flexure hinges and is actuated by magnetic(More)
Motion of the sample arm fiber in optical coherence tomography (OCT) systems can dynamically alter the polarization state of light incident on tissue during imaging, with consequences for both conventional and polarization-sensitive (PS-)OCT. Endoscopic OCT is particularly susceptible to polarization-related effects, since in most cases, the transverse(More)
The purpose of this study was to determine the sensitivity and specificity of optical coherence tomography (OCT) under two well-defined clinical settings. First, as an aid to cervical cancer screening, using visual inspection with acetic acid (VIA) in low-resource settings, and the second, as an adjunct to the traditional management of abnormal cervical(More)
  • 1