F I Biali

Learn More
The effect of gamma-aminobutyric acid (GABA) on synaptic transmission in rat superior cervical ganglion (SCG) was assessed in vitro by extracellular recording. Postganglionic compound action potentials (CAPs) triggered by preganglionic stimulation were blocked in a reversible and concentration-dependent fashion by short, 60 s long, superfusion with GABA(More)
We have compared the effect of calcium channel blockers on the potassium-evoked release of tritium-labeled acetylcholine and on preganglionic spike-evoked synaptic transmission in the rat superior cervical ganglion. Transmitter release at the nerve terminals is mediated by the influx of calcium through voltage-gated calcium channels. While four types of(More)
The properties of singles K+ channels in normal and denervated muscles were compared using the "patch-clamp" technique. Single channels were recorded from vesicles obtained by stretching bundles of normal and denervated extensor digitorium longus (EDL) muscles. The most frequently observed channel in normal muscles was a high conductance (266 pS) Ca++(More)
Activity-dependent changes of synaptic efficacy in the superior cervical ganglion (SCG) can be prevented by gamma-aminobutyric acid (GABA). We have studied the effects of picrotoxin (PTX) on GABA-mediated inhibition of long-term potentiation (LTP) of synaptic transmission in the rat SCG. Compound action potentials were recorded extracellularly in the(More)
  • 1