Learn More
Suppose that G is a connected reductive group over a p-adic field F , that K is a hyperspecial maximal compact subgroup of G(F ), and that V is an irreducible representation of K over the algebraic closure of the residue field of F . We establish an analogue of the Satake isomorphism for the Hecke algebra of compactly supported, Kbiequivariant functions f :(More)
Let l be a prime, and let Γ be a finite subgroup of GLn(Fl) = GL(V ). With these assumptions we say that Condition (C) holds if for every irreducible Γ-submodule W ⊂ ad V there exists an element g ∈ Γ with an eigenvalue α such that tr eg,αW 6= 0. Here, eg,α denotes the projection to the generalised α-eigenspace of g. This condition arises in the definition(More)
Smooth representations of p-adic groups arise in number theory mainly through the study of automorphic representations, and thus in the end, for example, from modular forms. We saw in the first lecture by Matt Emerton that a modular form, thought of as function on the set of lattices with level N structure, we obtain a function in C(GL2(Z)\GL2(R) ×(More)