Learn More
The radionuclides (131)I, (137)Cs and (134)Cs were observed in the Milano region (45°) of Italy early after the nuclear accident in Fukushima, Japan. Increased atmospheric radioactivity was observed on an air filter taken on 30 March 2011, while the maximum activity of 467 μBq m(-3) for (131)I was recorded at April 3-4, 2011. The first evidence of Fukushima(More)
Radioactive emissions into the atmosphere from the damaged reactors of the Fukushima Dai-ichi nuclear power plant (NPP) started on March 12th, 2011. Among the various radionuclides released, iodine-131 ((131)I) and cesium isotopes ((137)Cs and (134)Cs) were transported across the Pacific toward the North American continent and reached Europe despite(More)
The production of no-carrier-added (NCA) alpha-emitter (211)At/(211g)Po radionuclides for high-LET targeted radiotherapy and immunoradiotherapy, through the (209)Bi(alpha,2n) reaction, together with the required wet radiochemistry and radioanalytical quality controls carried out at LASA is described, through dedicated irradiation experiments at the MC-40(More)
This work describes the method adopted in our laboratories, to produce 94gTc, 95gTc, 95mTc and 96gTc radionuclides via proton-cyclotron irradiation on molybdenum targets of natural isotopic composition. A new set of experimental thin-target excitation functions and "effective" cross-sections for direct natMo(p,xn)(A)Tc [with A = 94, 95, 95, 96] nuclear(More)
Despite the cyclotron production method and the efficiency of the radiochemical procedures adopted, the long-lived radio-isotopic impurity 202Tl is always present in [201Tl]-labelled radio-pharmaceuticals, together with other short-lived impurities like, 200Tl. Rapid determination of the 202Tl impurity, can be achieved using HPGe gamma spectrometry and a(More)
There is much interest in understanding the biokinetics of zirconium in humans due to the potential radiological risk represented by the radionuclide 95Zr and by its daughter 95Nb. Despite the significance of zirconium, few data are available on the actual biokinetics of zirconium in humans. Accordingly the biokinetic model currently recommended by ICRP for(More)
The interest in the biokinetics of ruthenium and zirconium in humans is justified by the potential radiological risk represented by their radionuclides. Only a few data related to the biokinetics of ruthenium and zirconium in humans are available and, accordingly, the biokinetic models currently recommended by the ICRP for these elements are mainly based on(More)
The use of platinum, palladium and rhodium (Platinum Group Elements - PGEs) and the possibility of exposure to their ultratrace levels is increasing. In fact, the exponential development of metallic PGE-based nanoparticles (<100 nm in size) opens extraordinary perspectives in the areas of electrocatalysts and catalytic converters, magnetic nanopowders,(More)
The short-lived (12.7h half-life) (64)Cu radioisotope is both a beta(+) and a beta(-) emitter. This property makes (64)Cu a promising candidate for novel medical applications, since it can be used simultaneously for therapeutic application of radiolabelled biomolecules and for diagnosis with PET. Following previous work on (64)Cu production by deuteron(More)
(90)Y is one of the most useful radionuclides for radioimmunotherapeutic applications and has a half-life (t(1/2)=64.14h) suitable for most therapeutic applications, beta particles of high energy and decays to a stable daughter. It is significant that (90)Y is available conveniently and inexpensively from a radionuclide "generator" by decay of its parent,(More)