Learn More
Tyrosinase shows kinetic cooperativity in its action on o-diphenols, but not when it acts on monophenols, confirming that the slow step is the hydroxylation of monophenols to o-diphenols. This model can be generalised to a wide range of substrates; for example, type S(A) substrates, which give rise to a stable product as the o-quinone evolves by means of a(More)
MOTIVATION The derivation of steady-state equations is frequently carried out in enzyme kinetic studies. Done manually, this becomes tedious and prone to human error. The computer programs now available which are able to accept reaction mechanisms of some complexity are focused only on the strict steady-state approach. RESULTS Here we present a computer(More)
OBJECTIVES Elucidation of the mechanism of action of epigallocatechin-3-gallate (EGCG) against Candida albicans and demonstration of the connection between its antifolate activity and other metabolic pathways involved in C. albicans survival are the major objectives of this study. METHODS C. albicans ATCC 10231 and 12 clinical isolates were used. MICs of(More)
Under aerobic conditions, tyrosinase is inactivated by dopa as a result of suicide inactivation, and, under anaerobic conditions, as a result of irreversible inactivation. However, tyrosine protects the enzyme from being inactivated by dopa under anaerobic conditions. This paper describes how under aerobic conditions the enzyme acting on tyrosine is not(More)
This paper presents a kinetic analysis of the whole reaction course, i.e. of both the transient phase and the steady state, of open multicyclic enzyme cascade systems. Equations for fractional modifications are obtained which are valid for the whole reaction course. The steady state expressions for the fractional modifications were derived from the latter(More)
A program that performs simulation of the kinetics of enzyme-catalyzed reactions with up to 32 species is described. The program is written in C++ for MS Windows 95/98/NT and uses a simple text file to define the kinetic model. The use of the program is illustrated with some examples. WES is available free of charge on request from the authors (e-mail:(More)
  • 1