Learn More
Recent work regarding the analysis of brain imaging data has focused on examining functional and effective connectivity of the brain. We develop a novel descriptive and inferential method to analyze the connectivity of the human brain using functional MRI (fMRI). We assess the relationship between pairs of distinct brain regions by comparing expected joint(More)
This study attempted to define further the neural processing events underlying social anxiety in patients with social anxiety disorder (SAD) and their response to pharmacotherapy. Social anxiety-related changes in regional cerebral blood flow were defined by [15O]H2 positron emission tomography (PET) in medication-free individuals with generalized SAD(More)
The empirical and theoretical consideration of ethical decision making has focused on the process of moral judgment; however, a precondition to judgment is moral sensitivity, the ability to detect and evaluate moral issues [Rest, J. R. (1984). The major components of morality. In W. Kurtines & J. Gewirtz (Eds.), Morality, moral behaviour, and moral(More)
Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field(More)
An active area of neuroimaging research involves examining functional relationships between spatially remote brain regions. When determining whether two brain regions exhibit significant correlation due to true functional connectivity, one must account for the background spatial correlation inherent in neuroimaging data. We define background correlation as(More)
Functional magnetic resonance imaging (fMRI) data sets are large and characterized by complex dependence structures driven by highly sophisticated neurophysiology and aspects of the experimental designs. Typical analyses investigating task-related changes in measured brain activity use a two-stage procedure in which the first stage involves subject-specific(More)
Studying the interactions between different brain regions is essential to achieve a more complete understanding of brain function. In this article, we focus on identifying functional co-activation patterns and undirected functional networks in neuroimaging studies. We build a functional brain network, using a sparse covariance matrix, with elements(More)
Applications of functional magnetic resonance imaging (fMRI) have provided novel insights into the neuropathophysiology of major psychiatric, neurological, and substance abuse disorders and their treatments. Modern activation studies often compare localized task-induced changes in brain activity between experimental groups. Complementary approaches consider(More)
In vivo functional neuroimaging, including functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), is becoming increasingly important in defining the pathophysiology of psychiatric disorders such as schizophrenia, major depression, and Alzheimer's disease. Furthermore, recent studies have begun to investigate the possibility of(More)
BACKGROUND Isoflurane administration is known to increase extracellular dopamine (DA) concentration. Because the dopamine transporter (DAT) is a key regulator of DA, it is likely affected by isoflurane. This study investigates the hypothesis that isoflurane inhibits DA reuptake by causing DAT to be trafficked into the cell. METHODS Rhesus monkeys were(More)