Learn More
We present an analysis of results obtained from a mechanical apparatus consisting of an annular plate shearing over a granular bed. The size, energy dissipation, and duration of slips in the system exhibit power-law distributions and a 1/f(2) power spectrum, in accordance with self-organized criticality. We draw similarities with earthquakes.
In this work we experimentally study the behavior of a freely rotating asymmetric probe immersed in a vibrated granular medium. For a wide variety of vibration conditions the probe exhibits a steady rotation whose direction is constant with respect to the asymmetry. By changing the vibration amplitude and by filtering the noise in different frequency bands(More)
We present results from a series of experiments on a granular medium sheared in a Couette geometry and show that their statistical properties can be computed in a quantitative way from the assumption that the resultant from the set of forces acting in the system performs a Brownian motion. The same assumption has been utilized, with success, to describe(More)
We report on experimentally observed shear stress fluctuations in both granular solid and fluid states, showing that they are non-Gaussian at low shear rates, reflecting the predominance of correlated structures (force chains) in the solidlike phase, which also exhibit finite rigidity to shear. Peaks in the rigidity and the stress distribution's skewness(More)
The robustness of the self-organized critical (SOC) state observed in the motion of an annular plate rotating over a granular medium is studied in this paper. In particular, we investigate the effect of parameters to which the emergent SOC state may be sensitive, including the initialization scheme, driving velocity, and confining pressure. The results(More)
The rectification of unbiased fluctuations, also known as the ratchet effect, is normally obtained under statistical nonequilibrium conditions. Here we propose a new ratchet mechanism where a thermal bath solicits the random rotation of an asymmetric wheel, which is also subject to Coulomb friction due to solid-on-solid contacts. Numerical simulations and(More)
We experimentally investigate the response of a sheared granular medium in a Couette geometry. The apparatus exhibits the expected stick-slip motion and we probe it in the very intermittent regime resulting from low driving. Statistical analysis of the dynamic fluctuations reveals notable regularities. We observe a possible stability property for the torque(More)
We present results from a physical experiment which demonstrates that a sheared granular medium behaves in a manner analogous to earthquake activity. The device consists of an annular plate rotating over a granular medium in a stick-slip fashion. Previous observations by us include a bounded critical state with a power law distribution of event energy(More)