#### Filter Results:

#### Publication Year

2010

2014

#### Publication Type

#### Co-author

#### Publication Venue

Learn More

We consider the integral equation h(u(t)) = f Ê I g(t, x) u(x) dx ¡ , with t ∈ [0, 1], and prove an existence theorem for bounded solutions where f is not assumed to be continuous.

We deal with the integral equation u(t) = f (Ê I g(t, z) u(z) dz), with t ∈ I = [0, 1], f : R n → R n and g : I ×I → [0, +∞[. We prove an existence theorem for solutions u ∈ L ∞ (I, R n) where the function f is not assumed to be continuous, extending a result previously obtained for the case n = 1.

- Maddalena Bonanzinga, Filippo Cammaroto, Jan van Mill, Bruno A. Pansera
- 2014

a r t i c l e i n f o a b s t r a c t In this paper we are interested in monotone versions of partitionability of topological spaces and weak versions thereof. We identify several classes of spaces with these properties by constructing trees of open sets with various properties.

- ‹
- 1
- ›