Learn More
Sensations of cold are mediated by specific thermoreceptor nerve endings excited by low temperature and menthol. Here we identify a population of cold-sensitive cultured mouse trigeminal ganglion neurons with a unique set of biophysical properties. Their impulse activity during cooling and menthol application was similar to that of cold thermoreceptor(More)
1. The role of multiple potassium conductances in action potential repolarization and repetitive firing behavior of hypoglossal motoneurons was investigated using intracellular recording techniques in a brain stem slice preparation of the neonatal rat (0-15 days old). 2. The action potential was followed by two distinct afterhyperpolarizations (AHPs). The(More)
1. The role of calcium conductances in action potential generation and repetitive firing behavior of hypoglossal motoneurons (HMs) was investigated using intracellular recording and patch-clamp techniques in a brain stem slice preparation of neonatal rats (0-15 days old). 2. The action potential was followed by an afterdepolarization (ADP). The ADP was(More)
1. Single-electrode voltage clamp recordings in a rat brain stem slice preparation were used to determine the characteristics and postnatal development of a hyperpolarization-activated inward current (Ih) in hypoglossal motoneurons (HMs). 2. In young adult HMs (> P21), a noninactivating, time- and voltage-dependent inward current was evident during(More)
Molecular determinants of threshold differences among cold thermoreceptors are unknown. Here we show that such differences correlate with the relative expression of I(KD), a current dependent on Shaker-like Kv1 channels that acts as an excitability brake, and I(TRPM8), a cold-activated excitatory current. Neurons responding to small temperature changes have(More)
Basal tearing is crucial to maintaining ocular surface wetness. Corneal cold thermoreceptors sense small oscillations in ambient temperature and change their discharge accordingly. Deletion of the cold-transducing ion channel Transient receptor potential cation channel subfamily M member 8 (TRPM8) in mice abrogates cold responsiveness and reduces basal(More)
Cold thermoreceptors have been described in different territories of the vagus nerve. Application of cold temperature to these visceral afferents can evoke major protective reflexes and thermoregulatory responses. However, virtually nothing is known about the transduction mechanisms underlying cold sensitivity in vagal afferents. Here, we investigated the(More)
Two-pore-domain K(+) channels provide neuronal background currents that establish resting membrane potential and input resistance; their modulation provides a prevalent mechanism for regulating cellular excitability. The so-called TASK channel subunits (TASK-1 and TASK-3) are widely expressed, and they are robustly inhibited by receptors that signal through(More)
Transient receptor potential channels are a family of cation channels involved in diverse cellular functions. Most of these channels are expressed in the nervous system and play a key role in sensory physiology. TRPM8 (transient receptor potential melastatine 8), a member of this family, is activated by cold, cooling substances such menthol and icilin and(More)
Topical application of nicotine, as used in nicotine replacement therapies, causes irritation of the mucosa and skin. This reaction has been attributed to activation of nicotinic acetylcholine receptors (nAChRs) in chemosensory neurons. In contrast with this view, we found that the chemosensory cation channel transient receptor potential A1 (TRPA1) is(More)