Félíx Busqué

Learn More
Catechols are found in nature taking part in a remarkably broad scope of biochemical processes and functions. Though not exclusively, such versatility may be traced back to several properties uniquely found together in the o-dihydroxyaryl chemical function; namely, its ability to establish reversible equilibria at moderate redox potentials and pHs and to(More)
Synthetic photochromic compounds can be designed to control a variety of proteins and their biochemical functions in living cells, but the high spatiotemporal precision and tissue penetration of two-photon stimulation have never been investigated in these molecules. Here we demonstrate two-photon excitation of azobenzene-based protein switches and versatile(More)
An efficient and metal-free protocol for direct oxidation of secondary amines to nitrones has been developed, using Oxone in a biphasic basic medium as the sole oxidant. The method is general and tolerant with other functional groups or existing stereogenic centers, providing rapid access to enantiomerically pure compounds in good yields.
A new azobenzene-based photoswitch, 2, has been designed to enable optical control of ionotropic glutamate receptors in neurons via sensitized two-photon excitation with NIR light. In order to develop an efficient and versatile synthetic route for this molecule, a modular strategy is described which relies on the use of a new linear fully protected(More)
The role of the catechol moiety in the adhesive properties of mussel proteins and related synthetic materials has been extensively studied in the last years but still remains elusive. Here, a simplified model approach is presented based on a self-assembled monolayer (SAM) of upward-facing catechols thiol-bound to epitaxial gold substrates. The orientation(More)
A facile one-step polymerization strategy is explored to achieve novel catechol-based materials. Depending on the functionality of the catechol, the as-prepared product can be used to modify at will the surface tension of nano and bulk structures, from oleo-/hydrophobic to highly hydrophilic. A hydrophobic catechol prepared thus polymerized shows the(More)
A series of catechol derivatives with a different number of linear alkyl chain substituents, and different length, have been shown to polymerize in the presence of aqueous ammonia and air, yielding hydrophobic coatings that present the ability to provide robust and efficient water repellency on weaved textiles, including hydrophilic cotton. The(More)
[structure: see text] The total synthesis of the putative structure of the Stemona alkaloid stemonidine has been completed. The key transformations include a 1,3-dipolar cycloaddition of a chiral nitrone derived from (S)-prolinol and a spirolactonization process involving the generation of the critical stereocenter. The NMR data of the synthetic material do(More)
The interplay of guest encapsulation and release mechanisms in nanoscale metal-organic vehicles and its effect on the drug-delivery kinetics of these materials were investigated through a new multidisciplinary approach. Two rationally-designed molecular guests were synthesized, which consist of a red-fluorescent benzophenoxazine dye covalently tethered to a(More)