Fátima Vaz

Learn More
Dry biosignal electrodes for electro-encephalography (EEG) are an essential step for realization of ubiquitous EEG monitoring and brain computer interface technologies. We propose a novel electrode design with a specific shape for hair layer interfusion and reliable skin contact. An electrically conductive Titanium-Nitride (TiN) thin layer is deposited on a(More)
Woody plants are particularly difficult to investigate due to high phenolic, resin, and tannin contents and laborious sample preparation. In particular, protein isolation from woody plants for two-dimensional gel electrophoresis (2-DE) is challenging as secondary metabolites negatively interfere with protein extraction and separation. In this study, three(More)
The autoregressive (AR) model is a widely used tool in electroencephalogram (EEG) analysis. The dependence of the AR model on both the segment length and several characteristic EEG patterns is addressed. The best AR model order is computed with three different criteria. The results show that the Rissanen criteria provides the more consistent order estimate(More)
Conventional Silver/Silver-Chloride electrodes are inappropriate for routine high-density EEG and emerging new fields of application like brain computer interfaces. A novel multipin electrode design is proposed. It enables rapid and easy application while maintaining signal quality and patient comfort. The electrode design is described and impedance and EEG(More)
This article presents proteomics data referenced in [1] Using proteomics-based evaluation of red blood cells (RBCs), we have identified differentially abundant proteins associated with Obstructive Sleep Apnea Syndrome (OSA). RBCs were collected from peripheral blood of patients with moderate/severe OSA or snoring at pre- (evening) and post-night (morning)(More)
Current usage of electroencephalography (EEG) is limited to laboratory environments. Self-application of a multichannel wet EEG caps is practically impossible, since the application of state-of-the-art wet EEG sensors requires trained laboratory staff. We propose a novel EEG cap system with multipin dry electrodes overcoming this problem. We describe the(More)
New areas of application for electroencephalography are in brain-computer interfaces, where disabled people might be able to interact with their environment based on measured brain signals. However, conventional electroencephalography is not suitable here. Thus, our aim is to develop novel dry electrodes for home use. We developed various novel EEG(More)
A dry bracelet electrode for electrocardiographic (ECG) signal monitoring was developed and successfully tested in human volunteers. The new electrode dispenses with the usual gel application and the previous skin preparation to monitor the signal. It was fabricated from a polyethylene tereftalate (PET) polymer sheet that was coated with a thin conductive(More)
  • 1