Learn More
Circadian rhythms allow organisms to time biological processes to the most appropriate phases of the day-night cycle. Post-transcriptional regulation is emerging as an important component of circadian networks, but the molecular mechanisms linking the circadian clock to the control of RNA processing are largely unknown. Here we show that PROTEIN ARGININE(More)
Light is a source of energy and also a regulator of plant physiological adaptations. We show here that light/dark conditions affect alternative splicing of a subset of Arabidopsis genes preferentially encoding proteins involved in RNA processing. The effect requires functional chloroplasts and is also observed in roots when the communication with the(More)
Alternative splicing plays a key role in generating protein diversity. Transfections with minigenes revealed coordination between two distant, alternatively spliced exons in the same gene. Mutations that either inhibit or stimulate inclusion of the upstream alternative exon deeply affect inclusion of the downstream one. However, similar mutations at the(More)
Gene expression regulation relies on a variety of molecular mechanisms affecting different steps of a messenger RNA (mRNA) life: transcription, processing, splicing, alternative splicing, transport, translation, storage and decay. Light induces massive reprogramming of gene expression in plants. Differences in alternative splicing patterns in response to(More)
Plants rely on a sophisticated light sensing and signaling system that allows them to respond to environmental changes. Photosensory protein systems -phytochromes, cryptochromes, phototropins, and ultraviolet (UV)-B photoreceptors- have evolved to let plants monitor light conditions and regulate different levels of gene expression and developmental(More)
  • 1