Learn More
Keyword-based search engines are in widespread use today as a popular means for Web-based information retrieval. Although such systems seem deceptively simple, a considerable amount of skill is required in order to satisfy non-trivial information needs. This paper presents a new conceptual paradigm for performing search in context, that largely automates(More)
A fundamental challenge in human health is the identification of disease-causing genes. Recently, several studies have tackled this challenge via a network-based approach, motivated by the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein or functional interactions. However, most of(More)
Direct in vivo investigation of mammalian metabolism is complicated by the distinct metabolic functions of different tissues. We present a computational method that successfully describes the tissue specificity of human metabolism on a large scale. By integrating tissue-specific gene- and protein-expression data with an existing comprehensive reconstruction(More)
We address the problem, fundamental to linguistics, bioinformatics, and certain other disciplines, of using corpora of raw symbolic sequential data to infer underlying rules that govern their production. Given a corpus of strings (such as text, transcribed speech, chromosome or protein sequence data, sheet music, etc.), our unsupervised algorithm(More)
Predicting the metabolic state of an organism after a gene knockout is a challenging task, because the regulatory system governs a series of transient metabolic changes that converge to a steady-state condition. Regulatory on/off minimization (ROOM) is a constraint-based algorithm for predicting the metabolic steady state after gene knockouts. It aims to(More)
This work presents a novel study of the notion of facial attractiveness in a machine learning context. To this end, we collected human beauty ratings for data sets of facial images and used various techniques for learning the attractiveness of a face. The trained predictor achieves a significant correlation of 0.65 with the average human ratings. The(More)
A large number of computational models of information processing in the basal ganglia have been developed in recent years. Prominent in these are actor-critic models of basal ganglia functioning, which build on the strong resemblance between dopamine neuron activity and the temporal difference prediction error signal in the critic, and between(More)
Inferring potential drug indications, for either novel or approved drugs, is a key step in drug development. Previous computational methods in this domain have focused on either drug repositioning or matching drug and disease gene expression profiles. Here, we present a novel method for the large-scale prediction of drug indications (PREDICT) that can(More)
Synonymous mutations do not alter the protein produced yet can have a significant effect on protein levels. The mechanisms by which this effect is achieved are controversial; although some previous studies have suggested that codon bias is the most important determinant of translation efficiency, a recent study suggested that mRNA folding at the beginning(More)
Molecular interaction databases can be used to study the evolution of molecular pathways across species. Querying such pathways is a challenging computational problem, and recent efforts have been limited to simple queries (paths), or simple networks (forests). In this paper, we significantly extend the class of pathways that can be efficiently queried to(More)