Eynav Klechevsky

Learn More
Little is known about the functional differences between the human skin myeloid dendritic cell (DC) subsets, epidermal CD207(+) Langerhans cells (LCs) and dermal CD14(+) DCs. We showed that CD14(+) DCs primed CD4(+) T cells into cells that induce naive B cells to switch isotype and become plasma cells. In contrast, LCs preferentially induced the(More)
The dendritic cell (DC) system of antigen-presenting cells controls immunity and tolerance. DCs initiate and regulate immune responses in a manner that depends on signals they receive from microbes and their cellular environment. They allow the immune system to make qualitatively distinct responses against different microbial infections. DCs are composed of(More)
We recently reported that human epidermal Langerhans cells (LCs) are more efficient than dermal CD14(+) DCs at priming naive CD8(+) T cells into potent CTLs. We hypothesized that distinctive dendritic cell (DC) cytokine expression profiles (ie, IL-15 produced by LCs and IL-10 expressed by dermal CD14(+) DCs) might explain the observed functional difference.(More)
We evaluated human CD8(+) T-cell responses generated by targeting antigens to dendritic cells (DCs) through various lectin receptors. We found the immunoreceptor tyrosine-based inhibitory motif-containing DC immunoreceptor (DCIR) to mediate potent cross-presentation. A single exposure to a low dose of anti-DCIR-antigen conjugate initiated antigen-specific(More)
Twenty-two HLA A*0201 patients with stage IV melanoma were enrolled in a phase 1 safety and feasibility trial using a composite dendritic cell (DC) vaccine generated by culturing CD34 hematopoietic progenitors and activated with IFN-alpha. The DC vaccine was loaded with peptides derived from four melanoma tissue differentiation antigens (MART-1, tyrosinase,(More)
Dendritic cells (DCs) orchestrate a repertoire of immune responses that endow resistance to infection and tolerance to self. DC plasticity and subsets are prominent determinants of the quality of elicited immune responses. Different DC subsets display different receptors and surface molecules and express different sets of cytokines/chemokines, all of which(More)
Dendritic cells (DCs) orchestrate a repertoire of immune responses that endows resistance to infection and tolerance to self. Understanding the principles by which DCs control immunity and tolerance has provided a rich basis for studying and improving clinical outcome of human disease treatment. Several features contribute to the complexity of the DC(More)
The skin immune system includes a complex network of dendritic cells (DCs). In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms that maintain immune homeostasis and in pathogenic chronic inflammation in which immune responses are unrestrained. Harnessing DC function by directly targeting(More)
In this study, we have explored the use of Fab-toxin proteins (immunotoxin) to target antigen-specific MHC-peptide complexes of in vitro and in vivo cancer cells. A human phage display library was used to screen for T-cell receptor (TCR)-like antibodies that are highly specific for the peptide melanoma-associated antigen MART-1(26-35) presented by HLA-A201.(More)
Human Langerhans cells (LCs) are highly efficient at priming cytolytic CD8(+) T cells compared with dermal CD14(+) dendritic cells (DCs). Here we show that dermal CD14(+) DCs instead prime a fraction of naïve CD8(+) T cells into cells sharing the properties of type 2 cytokine-secreting CD8(+) T cells (TC2). Differential expression of the CD8-antagonist(More)