Learn More
Little is known about the functional differences between the human skin myeloid dendritic cell (DC) subsets, epidermal CD207(+) Langerhans cells (LCs) and dermal CD14(+) DCs. We showed that CD14(+) DCs primed CD4(+) T cells into cells that induce naive B cells to switch isotype and become plasma cells. In contrast, LCs preferentially induced the(More)
The dendritic cell (DC) system of antigen-presenting cells controls immunity and tolerance. DCs initiate and regulate immune responses in a manner that depends on signals they receive from microbes and their cellular environment. They allow the immune system to make qualitatively distinct responses against different microbial infections. DCs are composed of(More)
We recently reported that human epidermal Langerhans cells (LCs) are more efficient than dermal CD14(+) DCs at priming naive CD8(+) T cells into potent CTLs. We hypothesized that distinctive dendritic cell (DC) cytokine expression profiles (ie, IL-15 produced by LCs and IL-10 expressed by dermal CD14(+) DCs) might explain the observed functional difference.(More)
Characterization of functionally distinct dendritic cell (DC) subsets in mice has fueled interest in whether analogous counterparts exist in humans. Transcriptional modules of coordinately expressed genes were used for defining shared functions between the species. Comparing modules derived from four human skin DC subsets and modules derived from the(More)
The skin immune system includes a complex network of dendritic cells (DCs). In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms that maintain immune homeostasis and in pathogenic chronic inflammation in which immune responses are unrestrained. Harnessing DC function by directly targeting(More)
We evaluated human CD8(+) T-cell responses generated by targeting antigens to dendritic cells (DCs) through various lectin receptors. We found the immunoreceptor tyrosine-based inhibitory motif-containing DC immunoreceptor (DCIR) to mediate potent cross-presentation. A single exposure to a low dose of anti-DCIR-antigen conjugate initiated antigen-specific(More)
The fast-moving field of dendritic cell (DC) biology is hard to keep pace with. Here we report on advances from the recent Keystone Symposium, "Dendritic Cells at the Center of Innate and Adaptive Immunity," organized in Vancouver, BC on Feb. 1-7, 2005 by Anne O'Garra, Jacques Banchereau, and Alan Sher. New insights into the molecular mechanisms of DC(More)
During viral infection, dendritic cells (DCs) capture infected cells and present viral Ags to CD8(+) T cells. However, activated DCs might potentially present cell-associated Ags derived from captured dead cells. In this study, we find that human DCs that captured dead cells containing the TLR3 agonist poly(I:C) produced cytokines and underwent maturation,(More)
Immunity results from a complex interplay between the antigen-non-specific innate immune system and the antigen-specific adaptive immune system. The cells and molecules of the innate system employ non-clonal recognition receptors including lectins, Toll-like receptors, NOD-like receptors, and helicases. B and T lymphocytes of the adaptive immune system(More)
Dendritic cells (DCs) orchestrate a repertoire of immune responses that endow resistance to infection and tolerance to self. DC plasticity and subsets are prominent determinants of the quality of elicited immune responses. Different DC subsets display different receptors and surface molecules and express different sets of cytokines/chemokines, all of which(More)