Learn More
The possibility that computerized image analysis could increase the reproducibility of grading of bladder carcinoma as compared to conventional subjective grading made by pathologists was investigated. Object, texture and graph based analysis were carried out from Feulgen stained histological tissue sections. The object based features were extracted from(More)
Automatic cell segmentation has various applications in cytometry, and while the nucleus is often very distinct and easy to identify, the cytoplasm provides a lot more challenge. A new combination of image analysis algorithms for segmentation of cells imaged by fluorescence microscopy is presented. The algorithm consists of an image pre-processing step, a(More)
Feature extraction is a crucial step in most cytometry studies. In this paper a systematic approach to feature extraction is presented. The feature sets that have been developed and used for quantitative cytology at the Laboratory for Biomedical Image Analysis of the GSF as well as at the Center for Image Analysis in Uppsala over the last 25 years are(More)
BACKGROUND Rac1 is a GTP-binding molecule involved in a wide range of cellular processes. Using digital image analysis, agonist-induced translocation of green fluorescent protein (GFP) Rac1 to the cellular membrane can be estimated quantitatively for individual cells. METHODS A fully automatic image analysis method for cell segmentation, feature(More)
We investigate how stereo graphics and haptics can be combined to facilitate the seeding procedure in semi-automatic segmentation of magnetic resonance angiography (MRA) images. Real-time volume rendering using maximum intensity projections (MIPs) has been implemented together with a haptic rendering method that provides force feedback based on local(More)
A new method for segmenting images of immunohistochemically stained cell nuclei is presented. The aim is to distinguish between cell nuclei with a positive staining reaction and other cell nuclei, and to make it possible to quantify the reaction. First, a new supervised algorithm for creating a pixel classifier is applied to an image that is typical for the(More)
Cancer diagnosis is based on visual examination under a microscope of tissue sections from biopsies. But whereas pathologists rely on tissue stains to identify morphological features, automated tissue recognition using color is fraught with problems that stem from image intensity variations due to variations in tissue preparation, variations in spectral(More)