Ewelina Piktel

Learn More
LL-37 is a C-terminal peptide proteolytically released from 18 kDa human cathelicidin protein (hCAP18). Chronic infections, inflammation, tissue injury and tissue regeneration are all linked with neoplastic growth, and involve LL-37 antibacterial and immunomodulatory functions. Such a link points to the possible involvement of LL-37 peptide in(More)
The pleiotropic activity of human cathelicidin LL-37 peptide includes an ability to suppress development of colon cancer cells. We hypothesized that the anticancer activity of LL-37 would improve when attached to the surface of magnetic nanoparticles (MNPs). Using colon cancer culture (DLD-1 cells and HT-29 cells), we evaluated the effects of MNPs, LL-37(More)
BACKGROUND Ceragenins, synthetic mimics of endogenous antibacterial peptides, are promising candidate antimicrobial agents. However, in some settings their strong bactericidal activity is associated with toxicity towards host cells. To modulate ceragenin CSA-13 antibacterial activity and biocompatibility, CSA-13-coated magnetic nanoparticles (MNP-CSA-13)(More)
Ceragenins constitute a novel family of cationic antibiotics characterized by a broad spectrum of antimicrobial activities, which have mostly been assessed in vitro. Using a polarized human lung epithelial cell culture system, we evaluated the antibacterial activities of the ceragenin CSA-13 against two strains of Pseudomonas aeruginosa (PAO1 and Xen5).(More)
Fungal infections, especially those caused by antibiotic resistant pathogens, have become a serious public health problem due to the growing number of immunocompromised patients, including those subjected to anticancer treatment or suffering from HIV infection. In this study we assessed fungicidal activity of the ceragenins CSA-13, CSA-131 and CSA-192(More)
The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of(More)
Core-shell magnetic nanoparticles (MNPs) are promising candidates in the development of new treatment methods against infections, including those caused by antibiotic-resistant pathogens. In this study, the bactericidal activity of human antibacterial peptide cathelicidin LL-37, synthetic ceragenins CSA-13 and CSA-131, and classical antibiotics vancomycin(More)
Fungal infections caused by Candida spp. represent an emerging problem during treatment of immunocompromised patients and those hospitalized with serious principal diseases. The ever-growing number of fungal strains exhibiting drug resistance necessitates the development of novel antimicrobial therapies including those based on membrane-permeabilizing(More)
Development of new antibacterial agents requires generation of new methods that will allow characterization of mechanisms of novel antibacterial actions as well as observation of pathogen susceptibility to antibiotics. A family of synthetic cationic lipids, such as ceragenins, which mimic the action of membrane-targeting natural cationic antibacterial(More)
Beyond their role as structural molecules, sphingolipids are involved in many important cellular processes including cell proliferation, apoptosis, inflammation, and migration. Altered sphingolipid metabolism is observed in many pathological conditions including gastrointestinal diseases. Inflammatory bowel disease (IBD) represents a state of complex,(More)