Ewald Hessel

Learn More
A murine model of allergen-induced airway inflammation and epithelial phenotypic change, and the time-courses of these events, are described. Mice were sensitized to ovalbumin using an adjuvant-free protocol, and challenged by multiple intratracheal instillations of ovalbumin by a non-surgical technique. Many of the characteristic features of human atopic(More)
In this study the role of interleukin (IL)4, IL5, interferon (IFN) gamma, and tumor necrosis factor (TNF) alpha in the development of airway hyperresponsiveness and inflammatory cell infiltration was investigated using a murine model for allergic asthma. Mice were sensitized with ovalbumin and subsequently challenged repeatedly with ovalbumin aerosols.(More)
Experiments were designed to investigate the role of IL-16 in a mouse model of allergic asthma. OVA-sensitized mice were repeatedly exposed to OVA or saline aerosols. Bronchoalveolar lavage fluid (BALF) was collected after the last aerosol, and the presence of IL-16 was evaluated using a migration assay with human lymphocytes. Migration of lymphocytes was(More)
1. Mice were sensitized by 7 intraperitoneal injections of ovalbumin without adjuvant (10 micrograms in 0.5 ml of sterile saline) on alternate days and after 3 weeks exposed to either ovalbumin (2 mg ml-1 in sterile saline) or saline aerosol for 5 min on 8 consecutive days. One day before the first challenge, animals were injected intraperitoneally on a(More)
To investigate the mechanisms underlying airway hyperresponsiveness a murine model was developed with several important characteristics of human allergic asthma. Mice were intraperitoneally sensitized with ovalbumin and after 4 weeks challenge via an ovalbumin aerosol. After aerosol, lung function was evaluated with a non-invasive forced oscillation(More)
A noninvasive forced oscillation technique was used to determine respiratory function in unanesthetized and spontaneously breathing mice. Pseudorandom noise pressure variations in a frequency range of 16-208 Hz were applied to the body surface, and the flow response was measured at the nose. From the pressure-flow relationship, respiratory transfer(More)
Epithelium-derived Fas ligand is believed to modulate inflammation within various tissues. In this paper, we report findings that suggest a similar immunoregulatory role for Fas ligand in the lung. First, Fas ligand was localized to nonciliated, cuboidal airway epithelial cells (Clara cells) throughout the airways in the normal murine lung by employing(More)
Small signal frequency analysis is one of the first standard methods electrical engineers are taught. Despite of its limitations it is applied to characterize and design electrical systems up to today. The actual VHDL-AMS standard supports frequency domain analysis based on linearized DAE systems. This makes it difficult to use pure frequency domain(More)