Ewa Szczurowska

Learn More
Some age-dependent epilepsies of infancy and childhood cannot be sufficiently treated with contemporaneous antiepileptics, therefore search for new mechanisms and new drugs active in pediatric patients is necessary. Possible anticonvulsant action of AMN082 (N,N'-dibenzhydryl-ethane-1,2-diamine dihydrochloride), a positive allosteric modulator of(More)
Glutamate is the main excitatory neurotransmitter in the brain and ionotropic glutamate receptors mediate the majority of excitatory neurotransmission (Dingeldine et al. 1999). The high level of glutamatergic excitation allows the neonatal brain (the 2(nd) postnatal week in rat) to develop quickly but it also makes it highly prone to age-specific seizures(More)
The activation of metabotropic glutamate receptors subtype 4 (mGluR4) potentiates models of absence seizures in adult rats. These seizures are age-dependent, but data concerning the role of mGluR4 in immature brain is insufficient. N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1acarboxamide (PHCCC), which is a positive allosteric modulator of these(More)
AMPA receptors lacking GluA2 subunit are widely distributed in developing brain. IEM1460 as a specific antagonist of these receptors might be a potential age-specific anticonvulsant. Possible anticonvulsant action was assessed in two models of epileptic seizures: pentylenetetrazol (PTZ) - induced convulsions and cortical afterdischarges elicited in 12-, 18-(More)
Ro 25-6981 maleate is a highly selective and activity-dependent antagonist of NMDA ionotropic glutamate receptors containing NR2B subunit (NR2B/NMDARs). The aim of our study was to investigate the influence of Ro 25-6981 administration in developing rats on physiological (single and paired pulse cortical interhemispheric evoked potentials) and epileptic(More)
AMPA receptors (AMPARs) are responsible for fast excitatory neurotransmission, and their prolonged activation can result in the generation and spread of epileptic seizures. At early stages of postnatal development, the majority of AMPARs are permeable to both Na(+) and Ca(2+) ions. This permeability, which increases neuronal excitability, is due to the lack(More)
  • 1