Learn More
IbpA/B, 16 kDa heat-shock proteins were recently described as recognizing heterologous protein inclusion bodies in Escherichia coli cells; the corresponding genes formed an operon regulated by the rpoH gene product, sigma 32 protein (Burland et al (1993) Genomics 16, 551; Allen et al (1992) J Bacteriol 174, 6938; Chuang et al (1993) Gene 134, 1; Chuang and(More)
The roles of the Escherichia coli IbpA and IbpB chaperones in protection of heat-denatured proteins against irreversible aggregation in vivo were investigated. Overproduction of IbpA and IbpB resulted in stabilization of the denatured and reversibly aggregated proteins (the S fraction), which could be isolated from E. coli cells by sucrose gradient(More)
Thermally aggregated, endogenous proteins of Escherichia coli form a distinct fraction, denoted S, which is separable by sucrose-density-gradient centrifugation. It was shown earlier that DnaK, DnaJ, IbpA and IbpB heat-shock proteins are associated with the S fraction. Comparison of the rise and decay of the S fraction in mutants defective for heat-shock(More)
The small heat-shock proteins IbpA/B are molecular chaperones that bind denatured proteins and facilitate their subsequent refolding by the ATP-dependent chaperones DnaK, DnaJ, GrpE and ClpB. In this report, we demonstrate that IbpA/B participate in the defence against copper-induced stress under aerobic conditions. In the presence of oxygen, DeltaibpA/B(More)
The small heat shock proteins are ubiquitous stress proteins proposed to increase cellular tolerance to heat shock conditions. We isolated IbpA, the Escherichia coli small heat shock protein, and tested its ability to keep thermally inactivated substrate proteins in a disaggregation competent state. We found that the presence of IbpA alone during substrate(More)
Persister cells (persisters) are transiently tolerant to antibiotics and usually constitute a small part of bacterial populations. Persisters remain dormant but are able to re-grow after antibiotic treatment. In this study we found that the frequency of persisters correlated to the level of protein aggregates accumulated in E. coli stationary-phase(More)
Heat shock induces protein aggregation in Escherichia coli and E. coli (lambda cl857). The aggregates (S fraction) appear 15 min post-induction and are separable from membranes by sucrose density-gradient centrifugation. The S fraction quickly disappears in wild type strains but persists in rpoH mutant with concomitant quick inner membrane destruction. We(More)
The expression of the ibpAibpB heat-shock operon of Escherichia coli was found previously not to conform to the known pattern of expression of the sigma(32)-regulated operons because the rpoH gene mutation inactivating the sigma(32) protein did not abolish the ibp induction. We show here that this effect can depend partly on the sigma(54)-promoter that is(More)
Recent studies have revealed that antibiotics can promote the formation of reactive oxygen species which contribute to cell death. In this study, we report that five different antibiotics known to stimulate production of reactive oxygen species inhibited growth of Escherichia coli biofilm. We demonstrated that supression of biofilm formation was mainly a(More)
Escherichia coli small heat shock proteins, IbpA/B, function as molecular chaperones and protect misfolded proteins against irreversible aggregation. IbpA/B are induced during overproduction of recombinant proteins and bind to inclusion bodies in E. coli cells. We investigated the effect of DeltaibpA/B mutation on formation of inclusion bodies and(More)