Learn More
O-GlcNAcylation is an abundant, dynamic, and inducible posttranslational modification in which single β-N-acetylglucosamine residues are attached by O-glycosidic linkage to serine or treonine residues. It is suggested that abnormally regulated O-GlcNAcylation may contribute to the pathology of cancer. Cycling of O-GlcNAc residues on intracellular proteins(More)
Although cancer metabolism has received considerable attention over the past decade, our knowledge on its specifics is still fragmentary. Altered cellular metabolism is one of the most important hallmarks of cancer. Cancer cells exhibit aberrant glucose metabolism characterized by aerobic glycolysis, a phenomenon known as Warburg effect. Accelerated glucose(More)
BACKGROUND The aim of this study was to examine the level of thiosulfate in the urine of prostate cancer (PCa) patients and evaluate its usefulness in the diagnosis and monitoring of prostate malignant transformation. Thiosulfate is a naturally occurring product of hydrogen sulfide (H2S) metabolism. H2S is involved in many physiological and pathological(More)
Increased glucose uptake mediated by glucose transporters and reliance on glycolysis are common features of malignant cells. Hypoxia-inducible factor-1α supports the adaptation of hypoxic cells by inducing genes related to glucose metabolism. The contribution of glucose transporter (GLUT) and hypoxia-inducible factor-1α (HIF-1α) activity to tumor behavior(More)
Although prostate cancer is one of the most common cancers in men, the genetic defects underlying its pathogenesis remain poorly understood. DNA damage repair mechanisms have been implicated in human cancer. Accumulating evidence indicates that the fidelity of the response to DNA double-strand breaks is critical for maintaining genome integrity. RAD51 is a(More)
Metallothioneins (MTs) are a family of metal binding proteins that play an important role in cellular processes such as proliferation and apoptosis. Metallothionein 2A is the most expressed MT isoform in the breast cells. A number of studies have demonstrated increased MT2A expression in various human tumors, including breast cancer. We carried out an(More)
Genetic polymorphisms in the DNA repair genes may be associated with increased cancer risk. The purpose of this study was to evaluate the association of the DNA repair genes polymorphisms with the risk of breast cancer development. The study included 200 breast cancer patients and 200 healthy controls. The following polymorphisms were studied: C/G(More)
The most lethal damage for the cell among all damage is double-strand breaks (DSB) of DNA. DSB cause development of cancer diseases including the triple-negative molecular subtype of breast cancer. The aim of this work was to evaluate the single nucleotide polymorphism -135G>C (rs1801320) of the RAD51 gene encoding DNA repair proteins by homologous(More)
There is no doubt that cancer is not only a genetic disease but that it can also occur due to epigenetic abnormalities. Diet and environmental factors can alter the scope of epigenetic regulation. The results of recent studies suggest that O-GlcNAcylation, which involves the addition of N-acetylglucosamine on the serine or threonine residues of proteins,(More)
TopBP1 protein displays structural as well as functional similarities to BRCA1 and is involved in DNA replication, DNA damage checkpoint response and transcriptional regulation. Aberrant expression of TopBP1 may lead to genomic instability and can have pathological consequences. In this study we aimed to investigate expression of TopBP1 gene at mRNA and(More)