Everad L. Tilokee

Learn More
BACKGROUND The impact of diabetes mellitus on the cardiac regenerative potential of cardiac stem cells (CSCs) is unknown yet critical, given that individuals with diabetes mellitus may well require CSC therapy in the future. Using human and murine CSCs from diabetic cardiac tissue, we tested the hypothesis that hyperglycemic conditions impair CSC function.(More)
Transplantation of ex vivo proliferated cardiac stem cells (CSCs) is an emerging therapy for ischemic cardiomyopathy but outcomes are limited by modest engraftment and poor long-term survival. As such, we explored the effect of single cell microencapsulation to increase CSC engraftment and survival after myocardial injection. Transcript and protein(More)
Despite advances in treatment, heart failure remains one of the top killers in Canada. This recognition motivated a new research focus to harness the fundamental repair properties of the human heart. Since then, cardiac stem cells (CSCs) have emerged as a promising cell candidate to regenerate damaged hearts. The rationale of this approach is simple with ex(More)
BACKGROUND Insulin-like growth factor 1 (IGF-1) activates prosurvival pathways and improves postischemic cardiac function, but this key cytokine is not robustly expressed by cultured human cardiac stem cells. We explored the influence of an enhanced IGF-1 paracrine signature on explant-derived cardiac stem cell-mediated cardiac repair. METHODS AND RESULTS(More)
First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene(More)
Although patient-sourced cardiac stem cells repair damaged myocardium, the extent to which medical co-morbidities influence cardiac-derived cell products is uncertain. Therefore, we investigated the influence of atherosclerotic risk factors on the regenerative performance of human cardiac explant-derived cells (EDCs). In this study, the Long Term(More)
  • 1