Evelyn M Kilareski

Learn More
Human immunodeficiency virus type 1 (HIV-1) has been shown to replicate productively in cells of the monocyte-macrophage lineage, although replication occurs to a lesser extent than in infected T cells. As cells of the monocyte-macrophage lineage become differentiated and activated and subsequently travel to a variety of end organs, they become a source of(More)
The long terminal repeat (LTR) regulates gene expression of HIV-1 by interacting with multiple host and viral factors. Cross-sectional studies in the pre-HAART era demonstrated that single nucleotide polymorphisms (SNPs) in peripheral blood-derived LTRs (a C-to-T change at position 3 of C/EBP site I (3T) and at position 5 of Sp site III (5T)) increased in(More)
The adaptation of human immunodeficiency virus type-1 (HIV-1) to an array of physiologic niches is advantaged by the plasticity of the viral genome, encoded proteins, and promoter. CXCR4-utilizing (X4) viruses preferentially, but not universally, infect CD4+ T cells, generating high levels of virus within activated HIV-1-infected T cells that can be(More)
The large majority of human immunodeficiency virus type 1 (HIV-1) markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of(More)
  • 1