Eveline C. Verhulst

Learn More
We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and(More)
Insects exhibit a variety of sex determining mechanisms including male or female heterogamety and haplodiploidy. The primary signal that starts sex determination is processed by a cascade of genes ending with the conserved switch doublesex that controls sexual differentiation. Transformer is the doublesex splicing regulator and has been found in all(More)
All insects in the order Hymenoptera have haplodiploid sex determination, in which males emerge from haploid unfertilized eggs and females are diploid. Sex determination in the honeybee Apis mellifera is controlled by the complementary sex determination (csd) locus, but the mechanisms controlling sex determination in other Hymenoptera without csd are(More)
The doublesex (dsx) gene of the parasitic wasp Nasonia vitripennis is described and characterized. Differential splicing of dsx transcripts has been shown to induce somatic sexual differentiation in Diptera and Lepidoptera, but not yet in other insect orders. Two spliceforms of Nasonia dsx mRNA are differentially expressed in males and females. In addition,(More)
The genetic basis of morphological differences among species is still poorly understood. We investigated the genetic basis of sex-specific differences in wing size between two closely related species of Nasonia by positional cloning a major male-specific locus, wing-size1 (ws1). Male wing size increases by 45% through cell size and cell number changes when(More)
Although the role of DNA methylation in insect development is still poorly understood, the number and role of DNA methyltransferases in insects vary strongly between species. DNA methylation appears to be widely present among the social hymenoptera and functional studies in Apis have suggested a crucial role for de novo methylation in a wide variety of(More)
In recent years, our knowledge of the conserved master-switch gene doublesex (dsx) and its function in regulating the development of dimorphic traits in insects has deepened considerably. Here, a comprehensive overview is given on the properties of the male- and female-specific dsx transcripts yielding DSX(F) and DSX(M) proteins in Drosophila melanogaster,(More)
Although sex determination is a universal process in sexually reproducing organisms, sex determination pathways are among the most highly variable genetic systems found in nature. Nevertheless, general principles can be identified among the diversity, like the central role of transformer (tra) in insects. When a functional TRA protein is produced in early(More)
The research into the Drosophila melanogaster sex-determining system has been at the basis of all further research on insect sex determination. This further research has made it clear that, for most insect species, the presence of sufficient functional Transformer (TRA) protein in the early embryonic stage is essential for female sexual development. In(More)
1Department of Biology, Mount Allison University, 63B York Street, Sackville, NB, Canada E4L 1G7 2School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA 3Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6 4Department of Physiology & Biophysics, Dalhousie University, 5850(More)