Evelien M. Bunnik

Learn More
Broadly reactive neutralizing antibodies are the focus of human immunodeficiency virus (HIV) type 1 vaccine design. However, only little is known about their role in acquired immunodeficiency syndrome (AIDS) pathogenesis and the factors associated with their development. Here we used a multisubtype panel of 23 HIV-1 variants to determine the prevalence of(More)
The development of the human malaria parasite Plasmodium falciparum is controlled by coordinated changes in gene expression throughout its complex life cycle, but the corresponding regulatory mechanisms are incompletely understood. To study the relationship between genome architecture and gene regulation in Plasmodium, we assayed the genome architecture of(More)
Most human immunodeficiency virus type 1 (HIV-1)-infected individuals develop an HIV-specific neutralizing antibody (NAb) response that selects for escape variants of the virus. Here, we studied autologous NAb responses in five typical CCR5-using progressors in relation to viral NAb escape and molecular changes in the viral envelope (Env) in the period from(More)
By comparing HIV-1 variants from people who became infected at the beginning of the epidemic and from people who have recently contracted the virus, we observed an enhanced resistance of the virus to antibody neutralization over time, accompanied by an increase in the length of the variable loops and in the number of potential N-linked glycosylation sites(More)
Human immunodeficiency virus type 1 (HIV-1) has the ability to adapt to the host environment by escaping from host immune responses. We previously observed that escape from humoral immunity, both at the individual and at a population level, coincided with longer variable loops and an increased number of potential N-linked glycosylation sites (PNGS) in the(More)
In eukaryotic organisms, gene expression is regulated at multiple levels during the processes of transcription and translation. The absence of a tight regulatory network for transcription in the human malaria parasite suggests that gene expression may largely be controlled at post-transcriptional and translational levels. In this study, we compare(More)
For the development of a neutralizing antibody-based human immunodeficiency virus type 1 (HIV-1) vaccine, it is important to characterize which antibody specificities are most effective against currently circulating HIV-1 variants. We recently reported that HIV-1 has become more resistant to antibody neutralization over the course of the epidemic, and we(More)
Cytosine DNA methylation is an epigenetic mark in most eukaryotic cells that regulates numerous processes, including gene expression and stress responses. We performed a genome-wide analysis of DNA methylation in the human malaria parasite Plasmodium falciparum. We mapped the positions of methylated cytosines and identified a single functional DNA(More)
CXCR4-using (X4) human immunodeficiency virus type 1 (HIV-1) variants evolve from CCR5-using (R5) variants relatively late in the natural course of infection in 50% of HIV-1 subtype B-infected individuals and subsequently coexist with R5 HIV-1 variants. This relatively late appearance of X4 HIV-1 variants is poorly understood. Here we tested the(More)
A substantial proportion of human immunodeficiency virus type 1 (HIV-1)-infected individuals has cross-reactive neutralizing activity in serum, with a similar prevalence in progressors and long-term nonprogressors (LTNP). We studied whether disease progression in the face of cross-reactive neutralizing serum activity is due to fading neutralizing humoral(More)