Eve C . Ostriker

Learn More
We review current understanding of star formation, outlining an overall theoretical framework and the observations that motivate it. A conception of star formation has emerged in which turbulence plays a dual role, both creating overdensities to initiate gravitational contraction or collapse, and countering the effects of gravity in these overdense regions.(More)
Using time-dependent linear perturbation theory, we evaluate the dynamical friction force on a massive perturber Mp traveling at velocity V through a uniform gaseous medium of density ρ0 and sound speed cs. This drag force acts in the direction −V̂ , and arises from the gravitational attraction between the perturber and its wake in the ambient medium. For(More)
We analyze the spectral properties of driven, supersonic compressible magnetohydrodynamic (MHD) turbulence obtained via high-resolution numerical experiments, for application to understanding the dynamics of giant molecular clouds. Via angle-averaged power spectra, we characterize the transfer of energy from the intermediate, driving scales down to smaller(More)
Using self-consistent magnetohydrodynamic (MHD) simulations, we explore the hypothesis that nonlinear MHD waves dominate the internal dynamics of galactic molecular clouds. Our models employ an isothermal equation of state and allow for self-gravity. We adopt “slab-symmetry,” which permits motions v⊥ and fields B⊥ perpendicular to the mean field, but(More)
We present two-dimensional hydrodynamical simulations of both jetand winddriven models for protostellar outflows in order to make detailed comparisons to the kinematics of observed molecular outflows. The simulations are performed with the ZEUS-2D hydrodynamical code using a simplified equation of state, simplified cooling and no external heating, and no(More)
The molecular component of the Galaxy is comprised of turbulent, magnetized clouds, many of which are self-gravitating and form stars. To develop an understanding of how these clouds’ kinetic and structural evolution may depend on their level of turbulence, mean magnetization, and degree of self-gravity, we perform a survey of direct numerical MHD(More)
The under-abundance of very massive galaxies in the Universe is frequently attributed to the effect of galactic winds. Although ionized galactic winds are readily observable, most of the expelled mass (that is, the total mass flowing out from the nuclear region) is likely to be in atomic and molecular phases that are cooler than the ionized phases.(More)
Velocity anisotropy induced by MHD turbulence is investigated using computational simulations and molecular line observations of the Taurus molecular cloud. A new analysis method is presented to evaluate the degree and angle of velocity anisotropy using spectroscopic imaging data of interstellar clouds. The efficacy of this method is demonstrated on model(More)
Using one-dimensional hydrodynamic simulations including interstellar heating, cooling, and thermal conduction, we investigate nonlinear evolution of gas flow across galactic spiral arms. We model the gas as a non-self-gravitating, unmagnetized fluid, and follow its interaction with a stellar spiral potential in a local frame comoving with the stellar(More)
We describe hot, optically-thin solutions for one-temperature accretion disks around black holes. We include cooling by synchrotron, bremsstrahlung, and Comptonization. Our solutions are thermally and viscously stable, with gas temperatures on the order of T ∼ 10 − 10K. The thermal stability is a direct result of the inclusion of synchrotron cooling. The(More)