Evanny Obregon

Learn More
As mobile IP-access is becoming the dominant technology for providing wireless services, the demand for more spectrum for this type of access is increasing rapidly. Since IP-access can be used for all types of services, instead of a plethora of dedicated, single-service systems, there is a significant potential to make spectrum use more efficient. In this(More)
Recent work has demonstrated that the underutilized spectrum in the Digital Television Bands, commonly referred to as TV White Space (TVWS), is a prime candidate for opportunistic spectrum access (OSA). However, a systematic assessment of the availability of this spectrum for secondary transmission was, until very recently, lacking. In a TVWS opportunity(More)
As Digital Television Broadcasting spreads over the world, existing (and more) TV channels can be distributed in less spectrum in the spectrum traditionally allocated to TV broadcasting. This freed spectrum is also referred to as the "Digital Dividend" and its use has been debated around the world. In addition, there is also a debate about the potential use(More)
In this paper, we investigate the spectrum sharing requirements of secondary access to 960-1215 MHz band which is primarily allocated to aeronautical usage. Primary system of interest is distance measuring equipments (DME) aiding navigation of airplanes. We consider a scenario where indoor femtocells share the spectrum as secondary users. For the protection(More)
Finding additional spectrum for indoor networks with very high capacity (ultra-dense networks, UDN) is a prime concern on the road to 5G wireless systems. Spectrum below or around 10 GHz has attractive propagation properties and previous work has indicated that vertical spectrum sharing between indoor users and outdoor wide-area services is feasible. In(More)
In this paper, we analyze the feasibility of indoor broadband service provisioning using secondary spectrum access to the 960-1215 MHz band, primarily allocated to the distance measuring equipment (DME) system for aeronautical navigation. We propose a practical secondary sharing scheme customized to the characteristics of the DME. Since the primary system(More)
In this paper, we propose and evaluate regulatory policies that would improve sharing conditions/opportunities for indoor/outdoor ultra-dense networks to the radar bands where the demand actually is (i.e. hot spots and urban areas). We consider three regulatory policies: area power regulation, area deployment regulation and the combination of both of them.(More)
The large expected increase in the capacity requirements raises not only technical issues but also regulatory and business challenges. One of the key methods to increase the capacity of mobile networks in a cost efficient way is to find additional frequency spectrum. However, it is a difficult task since most of the spectrum is already allocated in(More)
In this paper, we provide a quantitative assessment of the available spectrum for massive indoor broadband secondary access in the 960-1215 MHz band, primarily allocated to the distance measuring equipment (DME) systems. We employ a practical sharing scheme where the secondary users share the DME spectrum via geo-location database and spectrum sensing.(More)