Learn More
BACKGROUND Benefits from high-throughput sequencing using 454 pyrosequencing technology may be most apparent for species with high societal or economic value but few genomic resources. Rapid means of gene sequence and SNP discovery using this novel sequencing technology provide a set of baseline tools for genome-level research. However, it is questionable(More)
BACKGROUND In a context of climate change, phenotypic plasticity provides long-lived species, such as trees, with the means to adapt to environmental variations occurring within a single generation. In eucalyptus plantations, water availability is a key factor limiting productivity. However, the molecular mechanisms underlying the adaptation of eucalyptus(More)
Genetic analysis of wood chemical composition is often limited by the cost and throughput of direct analytical methods. The speed and low cost of Fourier transform near infrared (FT-NIR) overcomes many of these limitations, but it is an indirect method relying on calibration models that are typically developed and validated with small sample sets. In this(More)
Leaf morphology varies extensively among plant species and is under strong genetic control. Mutagenic screens in model systems have identified genes and established molecular mechanisms regulating leaf initiation, development, and shape. However, it is not known whether this diversity across plant species is related to naturally occurring variation at these(More)
The differences of a phenotypic trait produced by a genotype in response to changes in the environment are referred to as phenotypic plasticity. Despite its importance in the maintenance of genetic diversity via genotype-by-environment interactions, little is known about the detailed genetic architecture of this phenomenon, thus limiting our ability to(More)
Adventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural(More)
Improvement of plant feedstock for bioenergy production can be achieved by modifying wood chemical properties and increasing biomass productivity. We previously identified a candidate gene for carbon partitioning and growth on chromosome 13 (cpg13) of poplar. Cpg13 was identified as the regulator of carbon partition and growth within a QTL interval that(More)
  • 1