Evan Yale Snyder

Learn More
Stem cells capable of differentiating to multiple lineages may be valuable for therapy. We report the isolation of human and rodent amniotic fluid-derived stem (AFS) cells that express embryonic and adult stem cell markers. Undifferentiated AFS cells expand extensively without feeders, double in 36 h and are not tumorigenic. Lines maintained for over 250(More)
Migration toward pathology is the first critical step in stem cell engagement during regeneration. Neural stem cells (NSCs) migrate through the parenchyma along nonstereotypical routes in a precise directed manner across great distances to injury sites in the CNS, where they might engage niches harboring local transiently expressed reparative signals. The(More)
One of the impediments to the treatment of brain tumors (e.g., gliomas) has been the degree to which they expand, infiltrate surrounding tissue, and migrate widely into normal brain, usually rendering them "elusive" to effective resection, irradiation, chemotherapy, or gene therapy. We demonstrate that neural stem cells (NSCs), when implanted into(More)
Neural stem cells (NSCs) offer the potential to replace lost tissue after nervous system injury. This study investigated whether grafts of NSCs (mouse clone C17.2) could also specifically support host axonal regeneration after spinal cord injury and sought to identify mechanisms underlying such growth. In vitro, prior to grafting, C17.2 NSCs were found for(More)
The inference of transcriptional networks that regulate transitions into physiological or pathological cellular states remains a central challenge in systems biology. A mesenchymal phenotype is the hallmark of tumour aggressiveness in human malignant glioma, but the regulatory programs responsible for implementing the associated molecular signature are(More)
We previously used a retroviral vector to mark clones in the postnatal rodent retina and showed that at least two types of neurons and Müller glia can arise from a common progenitor. Here we describe the use of exo utero surgery to introduce a marker retrovirus into the proliferative zone of the retinas of embryonic day 13 and 14 mice. Analysis of marked(More)
An inhibitory neurotransmitter in mature brain, gamma-aminobutyric acid (GABA) also appears to be excitatory early in development. The mechanisms underlying this shift are not well understood. In vitro studies have suggested that Na-K-Cl cotransport may have a role in modulating immature neuronal and oligodendrocyte responses to the neurotransmitter GABA.(More)
Multipotent neural cell lines were generated via retrovirus-mediated v-myc transfer into murine cerebellar progenitor cells. When transplanted back into the cerebellum of newborn mice, these cells integrated into the cerebellum in a nontumorigenic, cytoarchitecturally appropriate manner. Cells from the same clonal line differentiated into neurons or glia in(More)
To better direct repair following spinal cord injury (SCI), we designed an implant modeled after the intact spinal cord consisting of a multicomponent polymer scaffold seeded with neural stem cells. Implantation of the scaffold-neural stem cells unit into an adult rat hemisection model of SCI promoted long-term improvement in function (persistent for 1 year(More)
Stable clones of neural stem cells (NSCs) have been isolated from the human fetal telencephalon. These self-renewing clones give rise to all fundamental neural lineages in vitro. Following transplantation into germinal zones of the newborn mouse brain they participate in aspects of normal development, including migration along established migratory pathways(More)