Evan Shechter

Learn More
The cell surface of Corynebacterium glutamicum grown on solid medium was totally covered with a highly ordered, hexagonal surface layer. Also, freeze-fracture revealed two fracture surfaces which were totally covered with ordered arrays displaying an hexagonal arrangement and the same unit cell dimension as the surface layer. The ordered arrays on the(More)
PS2 is the S-layer protein of Corynebacterium glutamicum. The S-layer may be detached from the cell as organized sheets by detergents at room temperature. The solubilization of PS2 in the form of monomers requires detergent treatment at high temperature (70 degrees C), conditions under which the protein is denatured. Treatment of the cells with proteinase K(More)
Osmotic upshock of E. coli cells in NaCl or sucrose medium resulted in a large decrease in the cytoplasmic volume and the inhibition of growth, of the electron transfer chain and of four different types of sugar transport system: the lactose proton symport, the glucose phosphotransferase system, the binding-protein dependent maltose transport system and the(More)
In this chapter we report on the molecular biology of crystalline surface layers of different bacterial groups. The limited information indicates that there are many variations on a common theme. Sequence variety, antigenic diversity, gene expression, rearrangements, influence of environmental factors and applied aspects are addressed. There is considerable(More)
We show that inverted membrane vesicles from Corynebacterium glutamicum, a Gram-positive bacterium, are able to generate and maintain an electrochemical gradient of protons in response to the addition of NADH. This result indicates that the respiratory chain is intact and that the vesicles are reasonably impermeable to protons. These membrane vesicles may(More)
The cytoplasmic and outer membranes containing either trans-delta-9-octadecenoate, trans-delta-9-hexadecenoate or cis-delta-9-octadecenoate as predominant unsaturated fatty acid residues in the phospholipids were prepared from a fatty acid auxotroph, Escherichia coli strain K1062. Order-disorder transitions of the phospholipids were revealed in both(More)