Evan Ma

Learn More
Unlike the well-defined long-range order that characterizes crystalline metals, the atomic arrangements in amorphous alloys remain mysterious at present. Despite intense research activity on metallic glasses and relentless pursuit of their structural description, the details of how the atoms are packed in amorphous metals are generally far less understood(More)
The ideal elastic limit is the upper bound to the stress and elastic strain a material can withstand. This intrinsic property has been widely studied for crystalline metals, both theoretically and experimentally. For metallic glasses, however, the ideal elastic limit remains poorly characterized and understood. Here we show that the elastic strain limit and(More)
Deformation twinning in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we find that the stress required for deformation twinning increases drastically(More)
In situ transmission electron microscope compression testing of submicron Al pillars shows two sample size regimes with contrasting behavior underlying the large strain bursts. For small pillars, the bursts originate from explosive and highly correlated dislocation generation, characterized by very high collapse stresses and nearly dislocation-free(More)
Because of crystal symmetry, body centred cubic (BCC) metals have large differences in lattice friction between screw and edge dislocations, and manifest generally different mechanical behaviours from face centred cubic (FCC) metals. Although mechanical annealing (significant drop in stored dislocation density(More)
Glasses are usually shaped through the viscous flow of a liquid before its solidification, as practiced in glass blowing. At or near room temperature (RT), oxide glasses are known to be brittle and fracture upon any mechanical deformation for shape change. Here, we show that with moderate exposure to a low-intensity (<1.8×10(-2) A cm(-2)) electron beam(More)
We report in situ nanocompression tests of Cu-Zr-Al metallic glass ͑MG͒ pillars in a transmission electron microscope. This technique is capable of spatially and temporally resolving the plastic flow in MGs. The observations reveal the intrinsic ability of fully glassy MGs to sustain large plastic strains, which would otherwise be preempted by catastrophic(More)
Displacive deformation via dislocation slip and deformation twinning usually plays a dominant role in the plasticity of crystalline solids at room temperature. Here we report in situ quantitative transmission electron microscope deformation tests of single crystal Sn samples. We found that when the sample size was reduced from 450 nm down to 130 nm,(More)
Pristine single crystalline gold particles with sizes ranging from 300 to 700 nm have been fabricated through high-temperature (1150 °C) liquid de-wetting of gold thin films atop a specially designed SiO 2 /Si substrate for in situ transmission electron microscopy testing. Quantitative compression tests showed that these particles display cataclysmic(More)
For metallic single crystals with dimensions in the micrometer and sub-micrometer regime, systematic studies have established that sample size has an obvious influence on the apparent strength, following a " smaller is stronger " trend. For amorphous metals, several metallic glasses (MG) appear to exhibit a similar trend, while a few others do not. Here,(More)