Learn More
Neurons in the central nervous system regulate their intracellular pH using particular membrane proteins of which two, namely the Na+-dependent Cl-/HCO3- exchanger and the Na+/H+ exchanger, are essential. In this study we examined messenger RNA expression and distribution of Na+/H+ exchanger in the newborn rat central nervous system and with maturation(More)
Unlike the well-defined long-range order that characterizes crystalline metals, the atomic arrangements in amorphous alloys remain mysterious at present. Despite intense research activity on metallic glasses and relentless pursuit of their structural description, the details of how the atoms are packed in amorphous metals are generally far less understood(More)
To understand the role of Na(+)/H(+) exchanger 1 (NHE1) in intracellular pH (pH(i)) regulation and neuronal function, we took advantage of natural knockout mice lacking NHE1, the most ubiquitously and densely expressed NHE isoform in the central nervous system (CNS). CA1 neurons from both wild-type (WT) and NHE1 mutant mice were studied by continuous(More)
O2 deprivation can produce many devastating clinical conditions such as myocardial infarct and stroke. The molecular mechanisms underlying the inherent tissue susceptibility or tolerance to O2 lack are, however, not well defined. Since the fruit fly, Drosophila melanogaster, is extraordinarily tolerant to O2 deprivation, we have performed a genetic screen(More)
We took advantage of the Drosophila melanogaster's extraordinary resistance to anoxia to study the molecular mechanisms underlying this phenomenon. We analyzed mRNA expression of heat shock proteins (HSP) (HSP26 and HSP70), ubiquitins (UB) (UB3 and UB4), cytochrome oxidase I (COXI) and superoxide dismutase (SOD) using slot blot analysis. The expression of(More)
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to(More)
A metal, or an alloy, can often exist in more than one crystal structure. The face-centred-cubic and body-centred-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been(More)
The atomic-level structure of a representative ternary Cu-Zr-Al bulk metallic glass (BMG) has been resolved. Cu- (and Al-) centered icosahedral clusters are identified as the basic local structural motifs. Compared with the Cu-Zr base binary, a small percentage of Al in the ternary BMG leads to dramatically increased population of full icosahedra and their(More)
Glasses are usually shaped through the viscous flow of a liquid before its solidification, as practiced in glass blowing. At or near room temperature (RT), oxide glasses are known to be brittle and fracture upon any mechanical deformation for shape change. Here, we show that with moderate exposure to a low-intensity (<1.8×10(-2) A cm(-2)) electron beam(More)
We have characterized the icosahedral short-range order in amorphous solids using local environment probes. Such topological local order is pronounced even in an amorphous alloy that does not form quasicrystalline phases upon crystallization, as demonstrated by the extended x-ray absorption fine structure and x-ray absorption near-edge structure of a Ni-Ag(More)