Eva d'Hennezel

Learn More
OBJECTIVE In this study, we asked whether a possible quantitative or qualitative deficiency in naturally occurring Foxp3(+)CD4(+) regulatory T-cells (nT(reg)), which display potent inhibitory effects on T-cell functions in vitro and in vivo, may predispose to the development of type 1 diabetes. RESEARCH DESIGN AND METHODS We assessed the frequency and(More)
To the Editor: In their review of psoriasis, Nes­ tle et al. (July 30 issue)1 focus only on the genetic aspect of this disease. Drugs are not included as a possible trigger of psoriasis. Certain drugs may precipitate psoriasis in persons without a family history of the disease or in predisposed persons, and they may induce psoriatic lesions on clinical­ ly(More)
Host factors in the intestine help select for bacteria that promote health. Certain commensals can utilize mucins as an energy source, thus promoting their colonization. However, health conditions such as inflammatory bowel disease (IBD) are associated with a reduced mucus layer, potentially leading to dysbiosis associated with this disease. We characterize(More)
Peripheral immune tolerance requires a finely controlled balance between tolerance to self-antigens and protective immunity against enteric and invading pathogens. Self-reactive T cells sometimes escape thymic clonal deletion, and can subsequently provoke autoimmune diseases such as type 1 diabetes (T1D) unless they are controlled by a network of tolerance(More)
The C1858T single nucleotide polymorphism (SNP) in PTPN22 (protein tyrosine phosphatase nonreceptor 22) leads to the 620 Arg to Trp polymorphism in its encoded human protein LYP. This allelic variant is associated with multiple autoimmune diseases, including type 1 diabetes (T1D), Crohn's disease, rheumatoid arthritis and systemic lupus erythematosus.(More)
Immune dysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome is a rare disorder in humans caused by germ-line mutations in the FOXP3 gene, a master transcriptional regulator for the development of CD4 regulatory T (Treg) cells. This T cell subset has global inhibitory functions that maintain immune homeostasis and mediate self-tolerance.(More)
A network of regulatory T (Treg) cells exists to downregulate immune responses in various inflammatory circumstances and ultimately assure peripheral T cell tolerance. Naturally occurring CD4(+)CD25(+) Treg cell represents a major lymphocyte population engaged in the dominant control of self-reactive T responses and maintenance of tolerance within this(More)
Natural FOXP3(+)CD4(+)CD25(High) regulatory T cells are critical in immunological self-tolerance. Their characterization in humans is hindered by the failure to discriminate these cells from activated effector T cells in inflammation. To explore the relationship between FOXP3 expression and regulatory function at the clonal level, we used a single-cell(More)
Two distinct subsets of CD4(+)Foxp3(+) regulatory T (Treg) cells have been described based on the differential expression of Helios, a transcription factor of the Ikaros family. Efforts to understand the origin and biological roles of these Treg populations in regulating immune responses have, however, been hindered by the lack of reliable surface markers(More)
BACKGROUND While a central role for the T helper (Th) 1/Th2 axis in food allergy has been established, the Th17 response in food-allergic humans has not been addressed. METHODS Th17 responses in 18 peanut-allergic children, who were also allergic to at least one additional food allergen, were assessed relative to 15 age-matched healthy controls. To(More)