Learn More
The alphabeta tubulin heterodimer is the structural subunit of microtubules, which are cytoskeletal elements that are essential for intracellular transport and cell division in all eukaryotes. Each tubulin monomer binds a guanine nucleotide, which is nonexchangeable when it is bound in the alpha subunit, or N site, and exchangeable when bound in the beta(More)
We present a refined model of the alpha beta-tubulin dimer to 3.5 A resolution. An improved experimental density for the zinc-induced tubulin sheets was obtained by adding 114 electron diffraction patterns at 40-60 degrees tilt and increasing the completeness of structure factor amplitudes to 84.7 %. The refined structure was obtained using(More)
Kinetochores are proteinaceous scaffolds implicated in the formation of load-bearing attachments of chromosomes to microtubules during mitosis. Kinetochores contain distinct chromatin- and microtubule-binding interfaces, generally defined as the inner and outer kinetochore, respectively (reviewed in). The constitutive centromere-associated network (CCAN)(More)
A high-resolution model of the microtubule has been obtained by docking the crystal structure of tubulin into a 20 A map of the microtubule. The excellent fit indicates the similarity of the tubulin conformation in both polymers and defines the orientation of the tubulin structure within the microtubule. Long C-terminal helices form the crest on the outside(More)
The Ndc80 complex is a key site of regulated kinetochore-microtubule attachment (a process required for cell division), but the molecular mechanism underlying its function remains unknown. Here we present a subnanometre-resolution cryo-electron microscopy reconstruction of the human Ndc80 complex bound to microtubules, sufficient for precise docking of(More)
The proteasome is the major ATP-dependent protease in eukaryotic cells, but limited structural information restricts a mechanistic understanding of its activities. The proteasome regulatory particle, consisting of the lid and base subcomplexes, recognizes and processes polyubiquitinated substrates. Here we used electron microscopy and a new heterologous(More)
How kinetochore proteins form a dynamic interface with microtubules is largely unknown. In budding yeast, the 10-protein Dam1 complex is an Aurora kinase target that plays essential roles maintaining the integrity of the mitotic spindle and regulating interactions with the kinetochore. Here, we investigated the biochemical properties of purified Dam1(More)
Tubulin and FtsZ share a common fold of two domains connected by a central helix. Structure-based sequence alignment shows that common residues localize in the nucleotide-binding site and a region that interacts with the nucleotide of the next tubulin subunit in the protofilament, suggesting that tubulin and FtsZ use similar contacts to form filaments.(More)
Type II CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. We(More)
Mitotic yeast cells express five septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1/Sep7). Only Shs1 is nonessential. The four essential septins form a complex containing two copies of each, but their arrangement was not known. Single-particle analysis by EM confirmed that the heterooligomer is octameric and revealed that the subunits are arrayed in a linear rod.(More)