Eva-Maria Damm

Learn More
Simian Virus 40 (SV40) has been shown to enter host cells by caveolar endocytosis followed by transport via caveosomes to the endoplasmic reticulum (ER). Using a caveolin-1 (cav-1)-deficient cell line (human hepatoma 7) and embryonic fibroblasts from a cav-1 knockout mouse, we found that in the absence of caveolae, but also in wild-type embryonic(More)
Single-cell heterogeneity in cell populations arises from a combination of intrinsic and extrinsic factors. This heterogeneity has been measured for gene transcription, phosphorylation, cell morphology and drug perturbations, and used to explain various aspects of cellular physiology. In all cases, however, the causes of heterogeneity were not studied. Here(More)
In this article, we define systems biology of virus entry in mammalian cells as the discipline that combines several approaches to comprehensively understand the collective physical behaviour of virus entry routes, and to understand the coordinated operation of the functional modules and molecular machineries that lead to this physical behaviour. Clearly,(More)
Cells sense the context in which they grow to adapt their phenotype and allow multicellular patterning by mechanisms of autocrine and paracrine signalling. However, patterns also form in cell populations exposed to the same signalling molecules and substratum, which often correlate with specific features of the population context of single cells, such as(More)
imian Virus 40 (SV40) has been shown to enter host cells by caveolar endocytosis followed by transport via caveosomes to the endoplasmic reticulum (ER). Using a caveolin-1 (cav-1)–deficient cell line (human hepatoma 7) and embryonic fibroblasts from a cav-1 knockout mouse, we found that in the absence of caveolae, but also in wild-type embryonic(More)
  • 1