Eva Maria Berghausen

Learn More
Pulmonary arterial hypertension (PAH) is a fatal disease with limited therapeutic options. Pathophysiological changes comprise obliterative vascular remodelling of small pulmonary arteries, elevated mean pulmonary arterial systolic pressure (PASP) due to elevated resistance of pulmonary vasculature, adverse right ventricular remodelling, and heart failure.(More)
OBJECTIVE Despite modern therapies, pulmonary arterial hypertension (PAH) harbors a high mortality. Vascular remodeling is a hallmark of the disease. Recent clinical studies revealed that antiremodeling approaches with tyrosine-kinase inhibitors such as imatinib are effective, but its applicability is limited by significant side effects. Although imatinib(More)
INTRODUCTION Despite recent advances, pulmonary arterial hypertension (PAH) remains a devastating disease which harbors a poor prognosis. Novel therapeutic approaches directly targeting pulmonary vascular remodeling are warranted. AREAS COVERED This review delineates the current limitations in the management of PAH and focuses on a novel,(More)
Despite recent advances in the management of patients with pulmonary arterial hypertension (PAH), this disease remains a devastating condition with limited survival. While the current therapies primarily target the vasoconstrictor/vasodilator imbalance in the pulmonary circulation, there is currently no cure for PAH, and pulmonary vascular(More)
OBJECTIVE Pulmonary arterial hypertension is a progressive pulmonary vascular disorder with high morbidity and mortality. Compelling evidence suggests that receptor tyrosine kinases, such as platelet-derived growth factor (PDGF) are closely involved in the pathogenesis of pulmonary arterial hypertension. We investigated the effects of 2 novel PDGF(More)
OBJECTIVE Neointima formation after vascular injury remains a significant problem in clinical cardiology, and current preventive strategies are suboptimal. Phosphatidylinositol 3'-kinase is a central downstream mediator of growth factor signaling, but the role of phosphatidylinositol 3'-kinase isoforms in vascular remodeling remains elusive. We sought to(More)
RATIONALE Platelet-derived growth factor (PDGF) plays a pivotal role in the pathobiology of pulmonary hypertension (PH) because it promotes pulmonary vascular remodeling. PH is frequently associated with pulmonary hypoxia. OBJECTIVES To investigate whether hypoxia alters PDGF β receptor (βPDGFR) signaling in the pulmonary vasculature. METHODS The impact(More)
The 2015 European Guidelines on Diagnosis and Treatment of Pulmonary Hypertension (PH) are also valid for Germany. While the guidelines contain detailed recommendations regarding clinical aspects of pulmonary arterial hypertension (PAH) and other forms of PH, they contain only a relatively short paragraph on novel findings on the pathobiology, pathology,(More)
P ulmonary arterial hypertension (PAH) is a progressive pulmonary vascular disorder with high morbidity and mortality. 1 Current therapeutic approaches for the treatment of PAH mainly provide symptomatic relief, as well as some improvement in prognosis. Pathological changes observed in vascular remodeling include endothelial injury, proliferation, and(More)
  • 1