Learn More
While it is well-known that individuals with autism spectrum disorder (ASD) have difficulties processing faces, very little is known about the origins of these deficits. The current study focused on 6- and 11-month-old infants who were at either high-risk (n = 43) or low-risk (n = 31) for developing ASD based on having a sibling already diagnosed with the(More)
It has been established that typically developing individuals have a bias to attend to facial information in the left visual field (LVF) more than in the right visual field. This bias is thought to arise from the right hemisphere's advantage for processing facial information, with evidence suggesting it to be driven by the configural demands of face(More)
Consistent with long-standing findings from behavioral studies, neuroimaging investigations have identified a region of the inferior temporal cortex that, in adults, shows greater face selectivity in the right than left hemisphere and, conversely, a region that shows greater word selectivity in the left than right hemisphere. What has not been determined is(More)
The adult human brain would appear to have specialized and independent neural systems for the visual processing of words and faces. Extensive evidence has demonstrated greater selectivity for written words in the left over right hemisphere, and, conversely, greater selectivity for faces in the right over left hemisphere. This study examines the emergence of(More)
The ability to recognize faces accurately and rapidly is an evolutionarily adaptive process. Most studies examining the neural correlates of face perception in adult humans have focused on a distributed cortical network of face-selective regions. There is, however, robust evidence from phylogenetic and ontogenetic studies that implicates subcortical(More)
It is commonly believed that, in right-handed individuals, words and faces are processed by distinct neural systems: one in the left hemisphere (LH) for words and the other in the right hemisphere (RH) for faces. Emerging evidence suggests, however, that hemispheric selectivity for words and for faces may not be independent of each other. One recent account(More)
There is a growing amount of evidence suggesting that individuals with autism have difficulty with categorization. One basic cognitive ability that may underlie this difficulty is the ability to abstract a prototype. The current study examined prototype and category formation with dot patterns in high-functioning adults with autism and matched controls.(More)
Consistent with long-standing findings from behavioral studies, neuroimaging investigations have identified a region of the inferior temporal cortex that, in adults, shows greater face selectivity in the right than left hemisphere and, conversely, a region that shows greater word selectivity in the left than right hemisphere. What has not been determined is(More)
  • 1