Eva L. Feldman

Learn More
OBJECTIVE Early diagnosis of distal symmetric sensorimotor polyneuropathy, a common complication of diabetes, may decrease patient morbidity by allowing for potential therapeutic interventions. We have designed an outpatient program to facilitate diagnosis of diabetic neuropathy. RESEARCH DESIGN AND METHODS Patients are initially administered a brief(More)
The diabetic neuropathies are heterogeneous, affecting different parts of the nervous system that present with diverse clinical manifestations. They may be focal or diffuse. Most common among the neuropathies are chronic sensorimotor distal symmetric polyneuropathy (DPN) and the autonomic neuropathies. DPN is a diagnosis of exclusion. The early recognition(More)
Diabetic peripheral neuropathy is a prevalent, disabling disorder. The most common manifestation is distal symmetrical polyneuropathy (DSP), but many patterns of nerve injury can occur. Currently, the only effective treatments are glucose control and pain management. While glucose control substantially decreases the development of neuropathy in those with(More)
In recent years, much interest has been devoted to defining the role of the IGF system in the nervous system. The ubiquitous IGFs, their cell membrane receptors, and their carrier binding proteins, the IGFBPs, are expressed early in the development of the nervous system and are therefore considered to play a key role in these processes. In vitro studies(More)
Oxidative stress results from a cell or tissue failing to detoxify the free radicals that are produced during metabolic activity. Diabetes is characterized by chronic hyperglycemia that produces dysregulation of cellular metabolism. This review explores the concept that diabetes overloads glucose metabolic pathways, resulting in excess free radical(More)
Neuropathy is the most common and debilitating complication of diabetes and results in pain, decreased motility, and amputation. Diabetic neuropathy encompasses a variety of forms whose impact ranges from discomfort to death. Hyperglycemia induces oxidative stress in diabetic neurons and results in activation of multiple biochemical pathways. These(More)
OBJECTIVE Neuropathy is a frequent and severe complication of diabetes. Multiple metabolic defects in type 2 diabetic patients result in oxidative injury of dorsal root ganglia (DRG) neurons. Our previous work focused on hyperglycemia clearly demonstrates induction of mitochondrial oxidative stress and acute injury in DRG neurons; however, this mechanism is(More)
The current study examines the association between glucose induction of reactive oxygen species (ROS), mitochondrial (Mt) depolarization, and programmed cell death in primary neurons. In primary dorsal root ganglion (DRG) neurons, 45 mM glucose rapidly induces a peak rise in ROS corresponding to a 50% increase in mean Mt size at 6 h (P<0.001). This is(More)
Thirteen patients, 11 women and 2 men, developed sensory and autonomic neuronopathies in association with features of primary Sjögren's syndrome. In 11, Sjögren's syndrome had not been previously diagnosed at the time of neurological presentation. All had prominent loss of kinesthesia and proprioception. Pain and thermal sensibility were less severely(More)
Dorsal root ganglia (DRG) neurons degenerate in diabetic neuropathy (DN) and exhibit mitochondrial damage. We studied mitochondria of cultured DRG neurons exposed to high glucose as an in vitro model of DN. High glucose sequentially increases the expression, activation and localization of the pro-apoptotic proteins Bim and Bax and the mitochondrial fission(More)