Eva Jiménez-Guri

Learn More
Molecular evidence suggests that Acoelomorpha, a proposed phylum composed of acoel and Nemertodermatida flatworms, are the most basal bilaterian animals. Hox and ParaHox gene complements characterised so far in acoels consist of a small set of genes, comprising representatives of anterior, central and posterior genes, altogether Hox and ParaHox, but no(More)
A major evolutionary divide occurs in the animal kingdom between the so-called radially symmetric animals, which includes the cnidarians, and the bilaterally symmetric animals, which includes all worm phyla. Buddenbrockia plumatellae is an active, muscular, parasitic worm that belongs to the phylum Myxozoa, a group of morphologically simplified microscopic(More)
Model organisms, such as Drosophila melanogaster, provide powerful experimental tools for the study of development. However, approaches using model systems need to be complemented by comparative studies for us to gain a deeper understanding of the functional properties and evolution of developmental processes. New model organisms need to be established to(More)
Modern sequencing technologies have massively increased the amount of data available for comparative genomics. Whole-transcriptome shotgun sequencing (RNA-seq) provides a powerful basis for comparative studies. In particular, this approach holds great promise for emerging model species in fields such as evolutionary developmental biology (evo-devo). We have(More)
BACKGROUND Boundaries that prevent cell movement allow groups of cells to maintain their identity and follow independent developmental trajectories without the need for ongoing instructive signals from surrounding tissues. This is the case of vertebrate rhombomeric boundaries. Analysis in the developing chick hindbrain provided the first evidence that(More)
Model organisms, such as Drosophila melanogaster, allow us to address a wide range of biological questions with experimental rigour. However, studies in model species need to be complemented by comparative studies if we are to fully understand the functional properties and evolutionary history of developmental processes. The establishment of new model(More)
The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at(More)
We present SuperFly (http://superfly.crg.eu), a relational database for quantified spatio-temporal expression data of segmentation genes during early development in different species of dipteran insects (flies, midges and mosquitoes). SuperFly has a special focus on emerging non-drosophilid model systems. The database currently includes data of high(More)
Bone morphogenetic proteins (BMPs) play key roles in development. In Drosophila melanogaster, there are three BMP-encoding genes: decapentaplegic (dpp), glass bottom boat (gbb) and screw (scw). dpp and gbb are found in all groups of insects. In contrast, the origin of scw via duplication of an ancestral gbb homologue is more recent, with new evidence(More)
Comparative studies of developmental processes are one of the main approaches to evolutionary developmental biology (evo-devo). Over recent years, there has been a shift of focus from the comparative study of particular regulatory genes to the level of whole gene networks. Reverse-engineering methods can be used to computationally reconstitute and analyze(More)