Eva Hurt-Camejo

Learn More
By its very nature, rupture of the atherosclerotic plaque is difficult to study directly in humans. A good animal model would help us not only to understand how rupture occurs but also to design and test treatments to prevent it from happening. However, several difficulties surround existing models of plaque rupture, including the need for radical(More)
BACKGROUND Increased dietary cholesterol intake is associated with atherosclerosis. Atherosclerosis development requires a lipid and an inflammatory component. It is unclear where and how the inflammatory component develops. To assess the role of the liver in the evolution of inflammation, we treated ApoE*3Leiden mice with cholesterol-free (Con), low (LC;(More)
OBJECTIVE We investigated the potential role of ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin motif type I) in atherogenesis. METHODS AND RESULTS ADAMTS-1 is expressed at the highest levels in the aorta when compared with other human tissues examined. Immunolocalization studies in human aorta and coronary artery indicate that ADAMTS-1(More)
We recently reported on the immunolocalization of type II secretory nonpancreatic phospholipase A2 (snpPLA2) in human atherosclerotic lesions. In the present study, we present data on the distribution and ultrastructural localization of snpPLA2 in adjacent nonatherosclerotic and atherosclerotic regions of human arteries. Electron microscopy (EM) of(More)
We recently reported the presence of secretory, nonpancreatic phospholipase A2 type II (snpPLA2; EC in human atherosclerotic arteries (Hurt-Camejo et al, Arterioscler Thromb Vasc Biol. 1997;17:300-309). SnpPLA2 may generate the proinflammatory products lysophospholipids and free fatty acids, thus contributing to atherogenesis when acting on low(More)
Animal and human studies suggest that both secretory PLA2 (sPLA2)-V and sPLA2-IIA (encoded, respectively, by the neighbouring PLA2G5 and PLA2G2A genes) contribute to atherogenesis. Elevated plasma sPLA2-IIA predicts coronary heart disease (CHD) risk, but no mass assay for sPLA2-V is available. We previously reported that tagging single nucleotide(More)
The first morphological sign of atherogenesis is the accumulation of extracellular lipid droplets in the proteoglycan-rich subendothelial layer of the arterial intima. Secretory nonpancreatic phospholipase A(2) (snpPLA(2)), an enzyme capable of lipolyzing LDL particles, is found in the arterial extracellular matrix and in contact with the extracellular(More)
-The role of the humoral immune response to oxidized low density lipoprotein (Ox-LDL) in atherogenesis is unclear and available studies are contradictory. The aims of the present study were (1) to compare antibody titers to modified LDL in a group of patients with hypercholesterolemia (n=102) with those in matched controls (n=102), (2) to analyze whether(More)
Group IIA secretory nonpancreatic phospholipase A(2) (snpPLA(2)) is associated with collagen fibers in the extracellular matrix of human atherosclerotic plaques. Decorin, a small proteoglycan (PG) carrying chondroitin/dermatan sulfate glycosaminoglycans (GAGs), forms part of the collagen network in human arteries. To explore whether snpPLA(2) may be(More)
OBJECTIVE To study the distribution of group V secretory phospholipase A2 (sPLA2) in human and mouse lesions and compare its expression by human vascular cells, its activity toward lipoproteins, and the interaction with arterial proteoglycans (proteoglycans) with those of sPLA2-IIA. In addition, we also investigated the effect of a Western diet and(More)