Learn More
We systematically study the design of simple patchy sphere models that reversibly self-assemble into monodisperse icosahedral clusters. We find that the optimal patch width is a compromise between structural specificity (the patches must be narrow enough to energetically select the desired clusters) and kinetic accessibility (they must be sufficiently wide(More)
We present a local order parameter based on the standard Steinhardt-Ten Wolde approach that is capable both of tracking and of driving homogeneous ice nucleation in simulations of all-atom models of water. We demonstrate that it is capable of forcing the growth of ice nuclei in supercooled liquid water simulated using the TIP4P/2005 model using over-biassed(More)
The ability to control the crystallization behaviour (including its absence) of particles, be they biomolecules such as globular proteins, inorganic colloids, nanoparticles, or metal atoms in an alloy, is of both fundamental and technological importance. Much can be learnt from the exquisite control that biological systems exert over the behaviour of(More)
Microtubule (MT) stability is related to the hydrolysis of the guanosine triphosphate nucleotide (NT) bound to β-tubulin. However, the molecular mechanism by which the NT state influences the stability of the contacts in the MT lattice remains elusive. Here, we present large-scale atomistic simulations of different tubulin aggregates, including individual(More)
The phase diagram for a system of model anisotropic particles with six attractive patches in an octahedral arrangement has been computed. This model for a relatively narrow value of the patch width where the lowest-energy configuration of the system is a simple cubic crystal. At this value of the patch width, there is no stable vapor-liquid phase(More)
In this review we focus on the determination of phase diagrams by computer simulation with particular attention to the fluid-solid and solid-solid equilibria. The methodology to compute the free energy of solid phases will be discussed. In particular, the Einstein crystal and Einstein molecule methodologies are described in a comprehensive way. It is shown(More)
In this paper a new method to evaluate the free energy of solids is proposed. The method can be regarded as a variant of the method proposed by Frenkel and Ladd [J. Chem. Phys. 81, 3188 (1984)]. The main equations of the method can be derived in a simple way. The method can be easily implemented within a Monte Carlo program. We have applied the method to(More)
The thermal behavior of the 309-atom Lennard-Jones cluster, whose structure is a complete Mackay icosahedron, has been studied by parallel tempering Monte Carlo simulations. Surprisingly for a magic number cluster, the heat capacity shows a very pronounced peak before melting, which is attributed to several coincident structural transformation processes.(More)
The recently proposed Einstein molecule approach is extended to compute the free energy of molecular solids. This method is a variant of the Einstein crystal method of Frenkel and Ladd [J. Chem. Phys. 81, 3188 (1984)]. In order to show its applicability, we have computed the free energy of a hard-dumbbell solid, of two recently discovered solid phases of(More)
In this work the high pressure region of the phase diagram of water has been studied by computer simulation by using the TIP4P/2005 model of water. Free energy calculations were performed for ices VII and VIII and for the fluid phase to determine the melting curve of these ices. In addition, molecular dynamics simulations were performed at high temperatures(More)